首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Computer simulation was performed for the processes occurring in the basic elements of the cathode (active layer, gas-diffusion layer) and bipolar plate of a fuel cell with Nafion as electrolyte and a platinum catalyst. Current generation in the active layer was considered together with the heat exchange processes (release of the heat formed in the active layer through the gas-diffusion layer into the bipolar plate), gas and vapor exchange in the gas-diffusion layer and process of the gas reagent (oxygen) saturation by water vapor in the bipolar plate channels. Voltammetric curves and dependences on the cathode potential of the power density, vapor flow dissipated from the active layer to the bipolar plate, actual active layer temperature and reduced partial pressures of oxygen and water vapors near the interface between the active and gas-diffusion layers were calculated. Analysis is performed of the way the heating of the cathode active layer intensifies the process of current generation in it, significantly increasing the value of overall characteristics of the cathode (current and power density).  相似文献   

2.
A computer simulation of the structure and modes of functioning of biporous active layers (activated carbon) in double-layer capacitors (DLCs) was performed. The charging of DLCs in a galvanostatic mode was studied. The main characteristics of DLCs (charging time, specific capacity, stored energy, and power) were calculated. DLCs with aqueous electrolyte of different types were studied: active layer with the “ideal” structure (type 1), active layer with a monoporous structure (2), and biporous active layer (3). A computer simulation of biporous active layers of DLCs involves the formulation of a model of the structure of the active layer, percolation evaluation, and calculation of the effective ion conductivities of both highly porous carbon grains and the whole active layer. When calculating the characteristics of the active layers of DLC, we analyzed the effect of the main parameters (charge current density and active layer thickness) on the charging process and overall characteristics. The central problem of calculation of a DLC with a real, nonmonoporos structure was formulated. In active layers generally having pores of three types (micro-, meso-, and macropores) in the galvanostatic mode of DLC charging, the wide pores are polarized first. In this case, the limiting acceptable potential is achieved, and galvanostatic charging should be stopped and changed to potentiostatic charging. As a result, a large number of micropores can remain unpolarized. Therefore, it is important to perform a theoretical search for means to carry out complete adsorption of ions in micropores and obtain high specific capacities of DLCs.  相似文献   

3.
Molecular dynamics simulations have been employed to investigate the hydration and dissolution of alpha-quartz (0001) surfaces in a liquid water environment. Our study indicates that the structure of the water layers near the surfaces is affected by the nature of the substrate surface and by temperature. Ordered mono-layers of interfacial water molecules form in the region of the substrate where the surface is highly charged and built up of Si-O-Si bridges. As the temperature is increased this ordered mono-layer structure is gradually lost. When the surface is terminated by silanol groups, the water retains liquid-like properties even at low temperature and the molecules are distributed in a random manner, without the formation of distinct ordered mono-layers of water molecules near the surface. Taking into account the entropy of the system, the calculated energies of stepwise dissolution of a silicon species from the surface suggest that on thermodynamic grounds the complete dissolution of silicon atoms from the quartz surfaces in a liquid water environment is an endothermic process, but that the formation of a -Si(OH)3 species at the surface would be possible. In addition, if the Si(OH)(4) species were to be dissolved, it would remain near the surface, and re-deposition at the defect-free surface is thermodynamically preferred, although there is an activation enthalpy to the first step in the process of nucleation of Si(OH)4 at the perfect surface.  相似文献   

4.
A steady-state, one-dimensional numerical model based on cylindrical electrode structure is presented to analyze the performance of the ordered cathode catalyst layer in Proton Exchange Membrane Fuel Cells. The model equations account for the Tafel kinetics of oxygen reduction reaction, proton migration, oxygen diffusion in the cylindrical electrolyte and the gas pores, oxygen distribution at the gas/electrolyte interface. The simulation results reveal that ordered catalyst layers have better performance than conventional catalyst layers due to the improvements of mass transport and the uniformity of the electrochemical reaction rate across the whole width of the catalyst layer. The influences of oxygen diffusivity in gas phase and electrolyte, and the proton conductivity have been shown. The limitation by oxygen diffusion in gas phase drives the active region of the catalyst layer to the catalyst layer/gas diffuser interface. The limitation by proton migration confines the active region of the catalyst layer to the membrane/catalyst layer interface. The limitation due to oxygen diffusion in electrolyte film maintains the uniform distribution of the active region throughout the ordered catalyst layer.  相似文献   

5.
Shen YL  Jiang HL  Xu J  Mao JG  Cheah KW 《Inorganic chemistry》2005,44(25):9314-9321
Solid state reactions of lanthanide oxide, MoO3 and SeO2 (or TeO2) at high temperature in an evacuated quartz tube lead to four new Ln-Mo-Se(Te)-O quaternary phases with four different types of structures, namely, Nd2MoSe2O10, Gd2MoSe3O12, La2MoTe3O12, and Nd2MoTe3O12. The structure of Nd2MoSe2O10 features a 3D architecture built by the intergrowth of the Nd-Se-O layers with the Nd-Mo-O layers. The structure of Gd2MoSe3O12 contains a 3D network of gadolinium selenite with the MoO6 octahedra occupying the cavities of the structure. The structure of La2MoTe3O12 features a 3D network of La2(Te3O8)2+ with the tunnels along the a axis occupied by the MoO4 tetrahedra. Nd2MoTe3O12 features a 2D layer built by the lanthanide ions interconnected by tellurite groups and ditellurite groups, with the MoO4 tetrahedra as the interlayer pendant groups. Room temperature and low temperature luminescent studies indicate that Nd2MoSe2O10 and Nd2MoTe3O12 exhibit strong luminescence in the near-IR region.  相似文献   

6.
The molecular configuration of water adsorbed on a hydrophilic silicon oxide surface at room temperature has been determined as a function of relative humidity using attenuated total reflection (ATR)-infrared spectroscopy. A completely hydrogen-bonded icelike network of water grows up to three layers as the relative humidity increases from 0 to 30%. In the relative humidity range of 30-60%, the liquid water structure starts appearing while the icelike structure continues growing to saturation. The total thickness of the adsorbed layer increases only one molecular layer in this humidity range. Above 60% relative humidity, the liquid water configuration grows on top of the icelike layer. This structural evolution indicates that the outermost layer of the adsorbed water molecules undergoes transitions in equilibrium behavior as humidity varies. These transitions determine the shape of the adsorption isotherm curve. The structural transitions of the outermost adsorbed layer are accompanied by interfacial energy changes and explain many phenomena observed only for water adsorption.  相似文献   

7.
ExoMars, ESA's next mission to Mars, will include a combined Raman/LIBS instrument for the comprehensive in-situ mineralogical and elemental analyses of Martian rocks and soils. It is inferred that water exists in the upper Martian surface as ice layers, “crystal” water or adsorbed pore water. Thus, we studied Laser Induced Breakdown Spectroscopy (LIBS) on wet and dry rocks under Martian environmental conditions in the temperature range − 60 °C to + 20 °C and in two pressure regimes, above and below the water triple point. Above this point, the LIBS signals from the rock forming elements have local minima that are accompanied by hydrogen (water) emission maxima at certain temperatures that we associate with phase transitions of free or confined water/ice. At these sample temperatures, the plasma electron density and its temperature are slightly lowered. In contrast to powder samples, a general increase of the electron density upon cooling was observed on rock samples. By comparing the LIBS signal behavior from the same rock with different grades of polishing, and different rocks with the same surface treatment, it was possible to distinguish between the influence of surface roughness and the bulk material structure (pores and grains). Below the triple point of water, the LIBS signal from the major sample elements is almost independent of the sample temperature. However, at both considered pressures we observed a hydrogen emission peak close to − 50 °C, which is attributed to a phase transition of supercooled water trapped inside bulk pores.  相似文献   

8.
We describe the effect of growth temperature and OHH(2)O composition on the wetting behavior of Pt(111). Changes to the desorption rate of ice films were measured and correlated to the film morphology using low energy electron diffraction and thermal desorption of chloroform to measure the area of multilayer ice and monolayer OHH(2)O exposed. Thin ice films roughen, forming bare (radical39 x radical39)R16 degrees water monolayer and ice clusters. The size of the clusters depends on growth temperature and determines their kinetic stability, with the desorption rate decreasing when larger clusters are formed by growth at high temperature. Continuous films of more than approximately 50 layers thick stabilize an ordered incommensurate ice film that does not dewet. OH coadsorption pins the first layer into registry with Pt, forming an ordered hexagonal (OH+H(2)O) structure with all the H atoms involved in hydrogen bonding. Although this layer has a similar honeycomb OH(x) skeleton to ice Ih, it is unable to reconstruct to match the bulk ice lattice parameter and does not form a stable wetting layer. Water aggregates to expose bare monolayer (OH+H(2)O), forming bulk ice crystallites whose size depend on preparation temperature. Increasing the proportion of water in the first layer provides free OH groups which stabilize the multilayer. The factors influencing multilayer wetting are discussed using density functional theory calculations to compare water adsorption on top of (OH+H(2)O) and on simple models for commensurate water structures. We show that both the (OH+H(2)O) structure and "H-down" water layers are poor proton acceptors, bonding to the first layer being enhanced by the presence of free OH groups. Formation of an ordered ice multilayer requires a water-metal interaction sufficient to wet the surface, but not so strong as to prevent the first layer relaxing to stabilize the interface between the metal and bulk ice.  相似文献   

9.
It is necessary to distinguish between the dew point and the frost point below 0 degrees C. The freezing of the dew and the melting of the frost are respectively detected by the rapid decrease and the increase of the conduction current on the narrow surface of insulated layer made of epoxy, 0.5 mm in width and 10 mm in length, on which the dew deposits. The dew point -9 degrees C and the frost point -8 degrees C in the humidity 21% at the temperature 13 degrees C are clearly distinguished in this method.  相似文献   

10.
A fuel cell with Nafion and platinum is considered. The effect of heating of the oxygen cathode active layer on the cathode overall characteristics (current and power density) is taken into account for the first time. Attention is focused on calculations of Tafel plots of oxygen cathodes and also on how the active layer temperature changes with the potential. Calculation parameters are as follows: fuel cell initial temperature, cathode active layer thickness, gas-diffusion layer effective heat conductivity and thickness. The following conditions of cathode operation are studied: (1) heat formed in the cathode active layer is almost completely removed, no active layer heating is observed, the active-layer temperature remains equal to that of fuel cell operation; (2) heat removal is impeded, the heat conductivity of the gas-diffusion layer is insufficiently high to remove heat. In the latter case, the active layer temperature may increase by several tens of degrees. A fundamental difference of Tafel plots for the catalytic layers studied in model experiments and the cathodic active layers is demonstrated. In the latter case, the first Tafel plot segment may extend further up to potentials of ∼0.6 V.  相似文献   

11.
MCM-22(P), the precursor to zeolite MCM-22, consists of stacks of layers that can be swollen and exfoliated to produce catalytically active materials. However, the current swelling procedures result in significant degradation of crystal morphology along with partial loss of crystallinity and dissolution of the crystalline phase. Fabrication of polymer nanocomposites and coatings with MCM-22 for separation, barrier, and other applications requires a swelling method that does not alter drastically the crystal morphology and layer structure and preserves the high aspect ratio of the layers. Here, we demonstrate such a method by swelling MCM-22(P) at room temperature. The low-temperature process does not disrupt the framework connectivity present in the parent MCM-22(P) material. By extensive washing with water, the swollen material, MCM-22(PS-RT), evolves to a new ordered layered structure. Interestingly, the swelling procedure is reversible and the swollen material can be restored back to MCM-22(P) by acidification of the sample. The swollen material can also be pillared to produce an MCM-36 analogue. It can also be exfoliated, and layers can be incorporated in a polymer matrix to make nanocomposites.  相似文献   

12.
Samples of rock, soil and seepage were collected from Yucca Mountain, USA, and analyzed for 36Cl/Cl ratios by accelerator mass spectrometry (AMS). Rock excavated from the Drill Hole Wash fault at repository horizon depths produced a ratio suggesting that small amounts of water with “bomb-pulse” 36Cl had percolated to that site over the past 50 years. Rock from four other sites within the exploratory studies facility did not yield bomb-pulse ratios. Ratios in the soil varied depending on depth and location, with some samples producing bomb-pulse signatures. Ratios for seep water were slightly elevated above the present cosmogenic background value. This paper also discusses results from a column study mimicking the passage of 36Cl through volcanic rock and from an experiment using bromide instead of chloride as a carrier in sample preparation for AMS.  相似文献   

13.
Li JM  Liu C  Xu Z  Zhang KP  Ke X  Li CY  Wang LD 《Lab on a chip》2011,11(16):2785-2789
Stomatal transpiration, which is an efficient way to carry water from the roots up to the leaves, can be described by "diameter-law". According to the law, the flow rate induced by micropore transpiration far exceeded that induced by macroscale evaporation, and it can be controlled by opening (or closing) some micropores. In this research, a bio-inspired micropump based on stomatal transpiration is presented. The micropump is composed of three layers: the top layer is a 93 μm-thick PVC (polyvinylchloride) film with a group of slit-like micropores; the second layer is a PMMA sheet with adhesives to join the other two layers together; the third layer is a microporous membrane. Using this pump, controllable flow rates of 0.13-3.74 μl min(-1) can be obtained. This micropump features high and adjustable flow-rates, simple structure and low fabrication cost. It can be used as a "plug and play" fluid-driven unit without any external power sources and equipment.  相似文献   

14.
Pumice from the major volcanic sources (Milos, Nisyros, Yali, Kos and Santorini) in the South Aegean region was investigated to reveal the differences between the composition of the bulk material, which contains a certain percentage of crystallites, and the pure glass phase, which is the main constituent. The knowledge of these differences is important for the identification of vitric tephra layers found in the Eastern Mediterranean region in archacological context, in deep sea drilling cores and lake sediments. Eruption products, deposited at some distance, show not only a decrease in their grain size, but also have usually lost their crystalline fraction due to gravity separation and consist only of glass shards. Major element distributions in such layers and in pumiceous glass are not sufficient for a reliable identification of the volcanic source, as several eruptions are known to have produced chemically very similar tephra layers in this region. Trace element data, especially of the rather immobile rare earth elements (REEs), can provide greater information on tephra originating from different volcanic eruptions. Therefore, a technique has been developed to separate the glass phase from different primary pumices to reveal differences in their trace element distributions. The concentrations of the major constituents, in particular Al, Ca, Fe, Mg, Mn, Na, Si, and Ti were determined by electron probe microanalysis (EPMA), those of Al, As, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Sm, Ta, Th, Ti, U, V, Yb and Zr by instrumental neutron activation analysis. Subtle differences between the compositions of the glass phase and the bulk material are explained by differentiation during partial crystallization. Their applicability to the classification of tephra layers is demonstrated.  相似文献   

15.
The structure and functioning modes of active layers in an electric double layer capacitor (EDLC) with an aqueous electrolyte are simulated by means of a computer. A model of active layers prepared from activated carbon materials is proposed, percolation estimates are performed and effective ionic conductivities are calculated. The polarization of active layers includes a sequence of two charging processes: first, galvanostatic and then potentiostatic. The proposed program of calculations involves mutual matching and optimization of seven parameters characterizing the active layer and conditions of charging processes. According to calculations, galvanostatic polarization of wide pores in the EDLC biporous active layer up to the limiting potential followed by potentiostatic polarization of fine pores allows the capacity C sp = 246 F/g and the energy W sp = 107 kJ/kg to be obtained in fractions of second.  相似文献   

16.
In this paper we review and classify the various patterns of isosteric heat versus loading for adsorption of gases on graphitised thermal carbon black at temperatures ranging from below the 3D triple point to temperatures above it, but less than the 3D critical point. We have identified the features of heat curve and highlighted the microscopic origin of these features. The patterns vary with temperature and with the relative strength of the fluid-fluid interaction and solid-fluid interaction. For simple adsorptives (by simple we meant there is no strong association between fluid particles), the heat curve is typified by fluid-fluid attraction and layering phenomena. For adsorptives showing strong association such as water, ammonia and methanol, the heat curve essentially begins below the condensation heat and then approaches it as loading is increased. This is mainly due to the strong hydrogen bonding in these fluids. A third group includes adsorptives such as benzene, where the heat curve is constant in the sub-monolayer coverage region (but is higher than the condensation heat) and then drops off to the condensation heat when higher layers are formed. The constant heat in the sub-monolayer region is due to the balance between the energy factor (from fluid-fluid interaction) and entropy factor (due to re-orientation of adsorbed molecules). Our proposed classification is supported by detailed GCMC simulations of various gases that have been reported in the literature, and we supplement these with new results for the adsorption of xenon on graphite to investigate in more detail the change in heat pattern with temperature. Xenon is chosen because of its high fluid-fluid interaction, allowing us to study the 2D-phase transition in the first as well as higher layers.  相似文献   

17.
冬瓜是一种常见的蔬菜,大部分品种成熟时表面覆盖一层类似于"白霜"的粉末。本文使用扫描电镜、接触角测量仪、傅立叶变换红外光谱、X射线衍射仪等设备对冬瓜皮表面白霜的浸润性、结构形貌及其组成进行了研究,证实了冬瓜皮表面白霜的超疏水特性,水滴在其表面的接触角高达154.8±3.5°,且滚动角小于5°。研究表明,冬瓜皮表面的白霜呈现微纳米多级拓扑结构,主要由长链脂肪酸、长链烷烃酯类组成,这种微纳米拓扑结构和化学组成的协同作用决定了冬瓜皮表面的超疏水性。本工作可为进一步了解、设计此类结构材料提供数据积累。  相似文献   

18.
A concept of active hydrophobized active layers with regular structure is introduced. In these layers, a hydrophobizer takes part in the development of gas pores representing a set of straight identical rods (cylinders) uniformly distributed over the active layer and extended in a direction perpendicular to the cathode surface. An advantage of cathodes with a thin regular-structure active layer is the reproducibility of their characteristics and a low content of platinum catalyst (up to tenth and even hundredth fractions of mg/cm2). A comparison of current characteristics of thin (with the thickness of several tens of μm) active layers with a regular structure and thick (with the thickness of several hundreds of μm) with the stochastic distribution of the hydrophobizer (with randomly distributed polytetrafluoroethylene) is made. For a fuel cell with an alkaline electrolyte (7 M KOH at 60°C), calculations show that at potentials below 0.5 V (RHE), the cathodes with thin regularstructure active layers demonstrate higher overall currents as compared with cathodes covered with thick active layers with a stochastic structure. However, the opposite trend is observed at potentials above 0.5 V. To increase the current in cathodes with thin regular-structure active layers, it is possible to, first, increase the active layer thickness and, second, decrease the size of hydrophobizer grains in them.  相似文献   

19.
Polar order in the phosphonium liquid crystal thin films, which are composed of two-dimensional ion-pair-based domains separated by the insulating hydrocarbon layers, was probed by second harmonic generation (SHG) analysis. Despite the ordinary amphiphilic self-assemblies containing no pi-electron moieties, the solid-state thin films retaining a smectic layer structure showed clearly an SHG activity, while the disordered films without the layer structure were not active at all for the SHG. It was found that the multilayer structure plays a crucial role for the SHG from the phosphonium thin films and the ionic layers act as an SHG-active site. The most significant characteristic of this system is to possess an ability to control SHG intensity electrically. The efficiency of the SHG process in the thin-film assemblies was enhanced by applying an external electric field parallel to the layer plane. Furthermore, through evaluation of thermal stability of the sample films, it was revealed that the SHG signals were detected only in the solid-state temperature range and the disappearance of the SHG occurs earlier than the solid-to-liquid crystalline phase transition. These results demonstrated that the origin of polar order in the phosphonium thin films is due to in-plane noncentrosymmetric arrangement (ferroelectric ordering) of ion pairs as an electric dipole, that is, dipole symmetry in an ionic layer.  相似文献   

20.
The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na(+), a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at the interface reflects the difference in the potentials of "image forces" between the cationic Na(+) and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field (approximately 10(9)-10(10) Vm) of the transition region and the layering of silica in the diffuse layer is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号