首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An iodine-modified Au(111) surface, (I/Au(111)), was used as a substrate to prepare a C 60 adlayer by self-organization in a benzene solution. A highly ordered C 60 adlayer was successfully prepared due to the moderate C 60-I/Au(111) interaction. Two lattice structures, (2 square root 3 x 2 square root 3) R30 degrees and p(2 x 2), were imaged for this C 60 adlayer. For the first structure, a featureless ball-like molecular shape was imaged, ascribed to the molecular rotation resulting from a symmetrical location between C 60 and iodine atoms. For the p(2 x 2) structure, the asymmetrical location of C 60 with respect to the iodine atoms freezes the C 60 molecules on the substrate, leading to a clear image of intramolecular structure. The intermediate iodine atoms in the C 60/I/Au(111) adlayer can be desorbed by electrochemically reduction without significantly affecting the ordering of the C 60 adlayer. However, the internal pattern of C 60 disappears in the absence of iodine.  相似文献   

2.
A morphological variation of Au(111) covered with irreversibly adsorbed Sb was investigated with cyclic voltammetry and EC-STM. At open circuit potential (approximately 0.0 V vs a Ag/AgCl reference electrode), the oxygenated Sb layers were formed as an island on the wide terraces and a terrace at the step edges of Au(111). The ultimate morphology at the open circuit potential was a network adlayer with a (radical3 x radical3)R30 degrees atomic arrangement. When the oxygenated layer was reduced, the adsorption features, such as the island, shrunk or disappeared depending on their sizes. This modification was interpreted in terms of an alloy formation of Sb and Au. All of the Sb atoms, however, were not involved in the alloy formation, although the alloyed and unalloyed domains showed (radical3 x radical3)R30 degrees atomic structures with different brightness in EC-STM images. During oxidation of the reduced Sb layers, the alloyed and unalloyed domains of Sb behaved in a different way: the alloyed Sb was stripped to a soluble species to leave pits, while the unalloyed Sb became an oxygenated adspecies, which desorbed very slowly. A long oxidation led to a Au(111) covered with pits and islands of (1 x 1) without any adsorbed Sb.  相似文献   

3.
The growth of Pt nanofilms on well-defined Au(111) electrode surfaces, using electrochemical atomic layer epitaxy (EC-ALE), is described here. EC-ALE is a deposition method based on surface-limited reactions. This report describes the first use of surface-limited redox replacement reactions (SLR(3)) in an EC-ALE cycle to form atomically ordered metal nanofilms. The SLR(3) consisted of the underpotential deposition (UPD) of a copper atomic layer, subsequently replaced by Pt at open circuit, in a Pt cation solution. This SLR(3) was then used a cycle, repeated to grow thicker Pt films. Deposits were studied using a combination of electrochemistry (EC), in-situ scanning tunneling microscopy (STM) using an electrochemical flow cell, and ultrahigh vacuum (UHV) surface studies combined with electrochemistry (UHV-EC). A single redox replacement of upd Cu from a PtCl(4)(2-) solution yielded an incomplete monolayer, though no preferential deposition was observed at step edges. Use of an iodine adlayer, as a surfactant, facilitated the growth of uniformed films. In-situ STM images revealed ordered Au(111)-(square root 3 x square root 3)R30 degrees-iodine structure, with areas partially distorted by Pt nanoislands. After the second application, an ordered Moiré pattern was observed with a spacing consistent with the lattice mismatch between a Pt monolayer and the Au(111) substrate. After application of three or more cycles, a new adlattice, a (3 x 3)-iodine structure, was observed, previously observed for I atoms adsorbed on Pt(111). In addition, five atom adsorbed Pt-I complexes randomly decorated the surface and showed some mobility. These pinwheels, planar PtI(4) complexes, and the ordered (3 x 3)-iodine layer all appeared stable during rinsing with blank solution, free of I(-) and the Pt complex (PtCl(4)(2-)).  相似文献   

4.
A simple unequal-sphere packing model is applied to study the iodine (3x3) adlayer on the Pt(111) surface. By using a newly introduced parameter, defined as the average adsorbate height, three characteristic adlattices, (3x3)-sym, (3x3)-asym, and (3x3)-lin, have been selected and characterized in great detail, including the exact adatom registry. The (3x3)-sym iodine adlattice, observed in many experimental studies, appears to be, on average, the closest one to the substrate surface. A special contour plot of average adsorbate height vs X and Y positions of the (3x3) iodine unit cell indicates the existence of two local minima, which are related to preferential formation of (3x3)-sym and (3x3)-asym iodine adlattices. Our model gives good agreement with experimental findings, and explains the mechanism of preferential appearance of (3x3)-sym and (3x3)-asym structures.  相似文献   

5.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated.  相似文献   

6.
The adsorption of semifluorinated alkanethiols on Au/mica was studied by scanning tunneling microscopy (STM). The adlayer structure produced is based on a p(2 x 2) structure though lines of molecules displayed extensive kinks and bends. In addition, a considerable variation in the contrast of molecular features is found. Molecular modeling calculations confirm that, for the fluorinated thiols, inequivalently adsorbed molecules within a p(2 x 2) registry are present, an aspect that endows the local structure of the adlayer with a higher flexibility in comparison to nonfluorinated thiols, where one adsorption site is strongly favored in a (radical 3 x radical 3) R30 degrees structure. Simulated STM imaging on the optimized systems successfully recovered the effects on the molecular feature contrast induced by the flexibility of the fluorinated thiol adlayer.  相似文献   

7.
This article concerns the growth of an atomic layer of Pb on the Au(111)( radical3 x radical3)R30 degrees -I structure. The importance of this study lies in the use of Pb underpotential deposition (UPD) as a sacrificial layer in surface-limited redox replacement (SLRR). SLRR reactions are being applied in the formation of metal nanofilms via electrochemical atomic layer deposition (ALD). Pb UPD is a surface-limited reaction, and if it is placed in a solution of ions of a more noble metal, redox replacement can occur, but limited by the amount of Pb present. Pb UPD is a candidate for use as a sacrificial layer for replacement by any more noble element. It has been used by this group for both Cu and Pt nanofilm formation using electrochemical ALD. The I atom layer was intended to facilitate electrochemical annealing during nanofilm growth. Two distinctly different Pb atomic layer structures are reported, studied using in situ scanning tunneling microscopy (STM) with an electrochemical flow cell and ultrahigh vacuum surface analysis combined directly with electrochemical reactions (UHV-EC). Starting with the initial Au(111)( radical3 x radical3)R30 degrees -I, 1/3 monolayer of I on the Au(111) surface, Pb deposition began at approximately 0.1 V. The first Pb UPD structure was observed just below -0.2 V and displayed a (2 x radical3)-rect unit cell, for a structure composed of 1/4 monolayer each of Pb and I. The I atoms fit in Pb 4-fold sites, on the Au(111) surface. The structure was present in domains rotated by 120 degrees. Deposition to -0.4 V resulted in complete loss of the I atoms and formation of a Pb monolayer on the Au(111), which produced a Moiré pattern, due to the Pb and Au lattice mismatch. These structures represent two well-defined starting points for the growth of nanofilms of other more noble elements. It is apparent from these studies that the adsorption of I- on Pb is weak, and it will rinse away. If Pb is used as a sacrificial metal in an electrochemical ALD cycle and adsorbed I atoms are employed for electrochemical annealing, I atoms will need to be applied each cycle.  相似文献   

8.
Adlayers of 15-crown-5-ether-substituted cobalt(II) phthalocyanine (CoCRPc) were prepared by immersion of either Au(111) or Au(100) substrate into benzene-ethanol (9:1 v/v) mixed solutions containing CoCRPc. In situ STM imaging was carried out after transferring the CoCRPc-modified Au crystals into aqueous HClO(4) solution. The packing arrangement of the CoCRPc array on Au(111) was determined to be p(8 x 4 radical 3R - 30 degrees ), and the internal structure was clearly observed by high-resolution STM. Two adlayer structures of CoCRPc, (8 x 9) and (4 radical 5 x 4 radical 5)R26.7 degrees, were found on the Au(100)-(1 x 1) terrace. In the presence of 1 mM Ca(2+), two Ca(2+) ions were trapped in two diagonally located 15-crown-5-ether moieties of each CoCRPc molecule on Au(111), whereas encapsulation of Ca(2+) ions was not seen in the CoCRPc arrays on the Au(100)-(1 x 1) surface. The present study demonstrates that the relationship between crown moieties of CRPc and the underlying Au lattice is important in the trapping of Ca(2+) ions in crown rings.  相似文献   

9.
This work presents characteristics of Pt deposits on Au(111) obtained by the use of spontaneous deposition and investigated by electrochemical scanning tunneling microscopy (EC-STM). On such prepared and STM characterized Au(111)/Pt surfaces, we studied electrocatalytic oxidation of formic acid and methanol. We show that the first monatomic layer of Pt displays a (square root 3 x square root 3)R30 degrees surface structure, while the second layer is (1 x 1). After prolonged deposition, multilayer Pt deposits are formed selectively on Au(111) surface steps and are 1-20 nm wide and one to five layers thick. On the optimized Au(111)/Pt surface, formic acid oxidation rates are enhanced by a factor of 20 compared to those of pure Pt(111). The (square root 3 x square root 3)R30 degrees-Pt yields very low methanol oxidation rates, but the rates increase significantly with further Pt growth.  相似文献   

10.
Hydroquinone (HQ) adlayers were formed on Pt(111) in HF solution and in a vacuum. By using scanning tunneling microscopy (STM) in solution, it was revealed that HQ formed an ordered structure on Pt(111) with a strong attractive interaction between two adjacent hydroxyl groups in neighboring HQ molecules. After the sample was transferred into a vacuum, low-energy electron diffraction (LEED) measurement was performed, which showed that the (2.56 x 2.56)R16 degrees incommensurate structure of the HQ adlayer was formed in solution. The HQ adlayer on Pt(111) was formed also by vapor deposition, and the identical (2.56 x 2.56)R16 degrees adlayer structure was found by LEED and STM in a vacuum.  相似文献   

11.
Scanning tunneling microscopy (STM) and low-energy electron diffraction were used to reveal the structures of ordered adlayers of [2+2]-type C60-C60 fullerene dimer (C120) and C60-C70 cross-dimer (C130) formed on Au(111) by immersingit in abenzene solution containing C120 or C130 molecules. High-resolution STM images clearly showed the packing arrangements and the electronic structures of C120 and C130 on the Au(111) surface in ultrahigh vacuum. The (2 square root3 x 4square root3)R30 degrees, (2square root3 x 5square root3)R30 degrees, and (7 x 7) structures were found for the C120 adlayer on the Au(111) surface, whereas C130 molecules were closely packed on the surface. Each C60 or C70 monomer cage was discerned in the STM image of a C130 molecule.  相似文献   

12.
Single-crystalline sulfated c-ZrO2(111) films of the cubic (c) type have been prepared by reactive deposition of Zr onto Pt(111) in an O2 atmosphere and subsequent exposition to a SO3 atmosphere. The morphology, atomic structure, and composition have been examined by scanning tunneling microscopy, low-energy electron diffraction (LEED), Auger electron spectroscopy, and density functional theory (DFT) calculations. The clean c-ZrO2(111) films display a (2x2) surface structure. During SO3 exposure at room temperature, a clear (radical3xradical3)R30 degrees structure develops. At about 700 K, the SO3-induced (radical3xradical3)R30 degrees structure disappears and the bright (2x2) LEED pattern of the clean ZrO2 films reappears. The energies of plausible c-ZrO2(111)/SO3 structures have been examined by DFT. The (radical3xradical3)R30 degrees structure found in the experiments turned out to be the most stable one for temperatures below 700 K. At temperatures around 700 K, a disordered low coverage structure may exist, which can not be observed by conventional LEED. A comparison of cubic zirconia surfaces with the alternative tetragonal system yields similar results for the SO3 adsorption in the DFT calculations and shows that c-ZrO2 surfaces are good models for the industrial used tetragonal ZrO2 supports.  相似文献   

13.
Resolving atomic site‐specific electronic properties and correlated substrate–molecule interactions is challenging in real space. Now, mapping of sub‐10 nm sized Pt nanoislands on a Au(111) surface was achieved by tip‐enhanced Raman spectroscopy, using the distinct Raman fingerprints of adsorbed 4‐chlorophenyl isocyanide molecules. A spatial resolution better than 2.5 nm allows the electronic properties of the terrace, step edge, kink, and corner sites with varying coordination environments to be resolved in real space in one Pt nanoisland. Calculations suggest that low‐coordinate atomic sites have a higher d‐band electronic profile and thus stronger metal–molecule interactions, leading to the observed blue‐shift of Raman frequency of the N≡C bond of adsorbed molecules. An experimental and theoretical study on Pt(111) and mono‐ and bi‐atomic layer Pt nanoislands on a Au(111) surface reveals the bimetallic effect that weakens with the increasing number of deposited Pt adlayer.  相似文献   

14.
The structure of aldehyde-terminated alkanethiol self-assembled monolayers (SAMs) on Au(111) is investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM), and density functional theory (DFT) calculations. For the first time, the structures of aldehyde-terminated SAMs are revealed with molecular resolution. SAMs of 11-mercapto-1-undecanal exhibit the basic (radical3xradical3)R30 degrees periodicity and form various c(4x2) superstructures upon annealing. In conjunction with DFT studies, the models of the (radical3xradical3)R30 degrees and the c(4x2) superstructures are constructed. In comparison with alkanethiol SAMs, the introduction of aldehyde-termini results in smaller domain size, lower degree of long-range order, large coverage of disordered areas, and higher density of missing molecules and other point defects within domains of closely packed molecules. The origin of these structural differences is mainly attributed to the strong dipole-dipole interactions among the aldehyde termini.  相似文献   

15.
Characteristic properties of the coronene layer formed on Au(111) for the epitaxial growth of various fullerenes are described. The electrochemical behavior of the coronene adlayer prepared by immersing a Au(111) substrate into a benzene solution containing coronene was investigated in 0.1 M HClO4. The as-prepared coronene adlayer on Au(111) revealed a well-defined (4 x 4) structure. Structural changes of the array of coronene molecules induced by potential manipulation were clearly observed by in situ scanning tunneling microscopy (STM). Supramolecularly assembled layers of fullerenes such as C60, C70, C60-C60 dumbbell dimer (C120), C60-C70 cross-dimer (C130), and C60 triangle trimer (C180) were formed on the well-defined coronene adlayer on the Au(111) surface by immersing the coronene-adsorbed Au(111) substrate into benzene solutions containing those molecules. The adlayers thus prepared were characterized by comparison with those which were directly attached to the Au(111) surface. The C60 molecules formed a honeycomb array with an internal structure in each C60 cage on the coronene adlayer, whereas C70 molecules were one-dimensionally arranged with the same orientations. The dimers, C120 and C130 molecules, formed an identical structure with c(11 x 4 radical3)rect symmetry. For the C130 cross-dimer molecule, C60 and C70 cages were clearly recognized at the molecular level. It was difficult to identify the adlayer of the C180 molecule directly attached to Au(111); however, individual C180 molecules could be recognized on the coronene-modified Au(111) surface. Thus, the adlayer structures of those fullerenes were strongly influenced by the underlying coronene adlayer, suggesting that the insertion of a coronene adlayer plays an important role in the formation of supramolecular assemblies of fullerenes.  相似文献   

16.
Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.  相似文献   

17.
Underpotential deposition (UPD) of Ag on Au(111) has been studied with two different electrolytes: aqueous 0.1 M H2SO4 solution in comparison with the ionic liquid 1-butyl-3-methylimidazolium chloride BMICl + AlCl3. Of particular interest is the distinct behavior of 2D phase formation at both interfaces, which has been investigated by cyclic and linear sweep voltammetry in combination with in situ electrochemical scanning tunneling microscopy (STM). It is found that one monolayer (ML) of Ag is formed in the UPD region in both electrolytes. In aqueous solution, atomically resolved STM images at 500 mV versus Ag/Ag+ show a (3 x 3) adlayer of Ag, whereas after sweeping the potential just before the commencement of the bulk Ag deposition, a transition from expanded (3 x 3) to pseudomorphic ML of Ag on Au(111) occurs. In BMICl-AlCl3, the first UPD process of Ag exhibits two peaks at 410 and 230 mV indicating that two distinct processes on the surface take place. For the first time, STM images with atomic resolution reveal a transition from an inhomogeneous to an ordered phase with a (square root of 3 x square root of 3)R30 degrees structure and an adsorption of AlCl4- anions having a superlattice of (1.65 x square root of 3)R30 degrees preceding the deposition of Ag.  相似文献   

18.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.  相似文献   

19.
The c(4 x 2) structure of C16H33SH alkanethiol monolayers self-assembled on Au(111) has been studied by grazing incidence X-ray diffraction. This structure coexists on the surface with the (radical3x radical3)R30 degrees phase. The structural refinement of the c(4 x 2) phase has been accomplished by omitting the fractional order reflections common to both structures. The surface unit cell consists of four symmetry-independent molecules with atomic displacements related by couples, such that only two nonequivalent chains are present in the surface cell. The stability between neighbor chains is due to van der Waals interactions. The substrate plays an important and non-negligible role in the c(4 x 2) reconstruction. The lateral and normal substrate relaxations to the surface plane are small, and gold atom displacements are lower than 0.25 angstroms but contribute very strongly to the fractional order intensities. The molecular chains form a close packed structure tilted by 37 degrees from the surface normal with no indications of dimer formation between closest S atoms.  相似文献   

20.
The amino acid L-cysteine (Cys) adsorbs in highly ordered (3 square root of 3 x 6) R30 degrees lattices on Au(111) electrodes from 50 mM ammonium acetate, pH 4.6. We provide new high-resolution in situ scanning tunneling microscopy (STM) data for the L-Cys adlayer. The data substantiate previous data with higher resolution, now at the submolecular level, where each L-Cys molecule shows a bilobed feature. The high image resolution has warranted a quantum chemical computational effort. The present work offers a density functional study of the geometry optimized adsorption of four L-Cys forms-the molecule, the anion, the neutral radical, and its zwitterion adsorbed a-top-at the bridge and at the threefold hollow site of a planar Au(111) Au12 cluster. This model is crude but enables the inclusion of other effects, particularly the tungsten tip represented as a single or small cluster of W-atoms, and the solvation of the L-Cys surface cluster. The computational data are recast as constant current-height profiles as the most common in situ STM mode. The computations show that the approximately neutral radical, with the carboxyl group pointing toward and the amino group pointing away from the surface, gives the most stable adsorption, with little difference between the a-top and threefold sites. Attractive dipolar interactions screened by a dielectric medium stabilize around a cluster size of six L-Cys entities, as observed experimentally. The computed STM images are different for the different L-Cys forms. Both lateral and vertical dimensions of the radical accord with the observed dimensions, while those of the molecule and anion are significantly more extended. A-top L-Cys radical adsorption further gives a bilobed height profile resembling the observed images, with comparable contributions from sulfur and the amino group. L-Cys radical a-top adsorption therefore emerges as the best representation of L-Cys adsorption on Au(111).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号