首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic conditions such as stoichiometries, temperature and pressure are optimized to achieve a high quality oxygen deficient SmFeAsO0.6 superconductor. Both electric and magnetic measurements show a sharp superconducting transition at about 55 K. Several important physical parameters are deduced. The apparent superconducting gap observed in heat capacity with 2Δo/kBTc of 4.57 larger than that of previous fluorine replaced samples indicate that this superconductivity will not strongly conflict with the phonon-mediated BCS mechanism. The mean free length ?=18.8 nm and the coherent length ξ=2.3-3.3 nm show that the superconductivity is in the clean limit.  相似文献   

2.
In tunneling experiments with high-quality single crystals of a single-layer cuprate superconductor Bi2Sr2CuO6+δ using the break junction and point-contact techniques at T<T c, the coexistence of the superconducting-state gap and the normal-state gap was observed. The values of the superconducting energy gap 2Δp?p are in the range from 13.4 to 15 meV (Δp?p=6.7–7.5 meV). The values of 2Δp?p are similar for two samples with T c=4 K and for two samples with T c=9–10 K and are independent of the carrier concentration. The normal-state gap, with the magnitude approximately equal to 50 meV, persists at T<T c and in the magnetic field H?H c2 up to 28 T. After the transition of the sample to the normal state, the intensity of the tunneling conductance rapidly decreases with increasing magnetic field strength and temperature. The observed large broadening of the tunneling spectra and large zero-bias conductances can be caused by a strong angular dependence of the superconducting gap. The tunneling results are in full agreement with the data of the angle-resolved photoemission spectroscopy measurements.  相似文献   

3.
The c-axis penetration depth Δλc in Bi2Sr2CaCu2O8+δ (BSCCO) single crystals as a function of temperature has been determined using two techniques, namely, measurements of the ac-susceptibility at a frequency of 100 kHz and the surface impedance at 9.4 GHz. Both techniques yield an almost linear function Δλc(T)∝T in the temperature range T<0.5T c. Electrodynamic analysis of the impedance anisotropy has allowed us to estimate λc(0)≈50 µm in BSCCO crystals overdoped with oxygen (T c≈84 K) and λc(0)≈150 µm at the optimal doping level (T c≈90 K).  相似文献   

4.
The resistance R, the superconducting transition temperature Tc and the energy gap Δ(T) have been measured on the BaPb0.7Bi0.3O3 films up to 14 kbar. We have found that up to 14 kbar: (1) pressure suppresses Tc and Δ(T) while enhances R, (2) the value of 2Δ(0)/kTc is 3.8±0.1, independent of pressure, and (3) the Δ(T)/Δ(0) varies with T/Tc in a BCS fashion but only for T/Tc<0.75 and independent of pressure. The results show that BaPb1?xBixO3 is a weak-coupling superconductor, but fail to provide information about the cause for the high Tc of the compound.  相似文献   

5.
The (Bi1.6Pb0.4)Sr2Ca2Cu3O10ZnO x (x=0–0.05 wt%) superconductor with addition of ZnO with average particle size 6 nm and 30 nm was prepared using the co-precipitation method. The ZnO particle size was larger than the coherence length, ξ, and smaller than the penetration depth, λ, of the superconductor. The microstructure, transition temperature (T c) and transport critical current density (J c) were studied. SEM micrographs showed a homogeneous distribution of ZnO nanoparticles throughout the samples. J c of all the ZnO added samples were higher than the non-ZnO added sample. The maximal J c and T c were observed when x=0.02 wt% for both series. J c (77 K) of the 6-nm ZnO added sample was 46 times larger than the non-ZnO added sample. The 6-nm ZnO added sample also showed higher J c compared to the 30-nm ZnO added sample. ZnO with size closer to ξ was more effective in enhancing J c.  相似文献   

6.
Measurement of the Meissner penetration depth, λ(T) were made in amorphous Zr70Cu30 samples. The results indicate that this amorphous alloy behaves as a BCS superconductor with 2Δ(0)?kTc = 3.8, where Δ(0) is the superconducting energy gap at T=0 and Tc the critical temperature. It is also concluded that the low energy excitation, TLS, characteristics of amorphous material does not contribute to Tc.  相似文献   

7.
Gold (Au) diffusion in superconducting Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy was investigated over the temperature range 500-800 °C by the energy dispersive X-ray fluorescence (EDXRF) technique. It is found that the Au diffusion coefficient decreases as the diffusion-annealing temperature decreases. The temperature dependences of Au diffusion coefficient in grains and over grain boundaries are described by the relations D1=6.7×10−5exp(−1.19 eV/kBT) and D2=9.7×10−4exp(−1.09 eV/kBT), respectively. The diffusion doping of Bi-2223 by Au causes a significant increase of the lattice parameter c by about 0.19%. For the Au-diffused samples, dc electrical resistivity and transport critical current density measurements indicated the critical transition temperature increased from 100 to 104 K and the critical current density increased from 40 to 125 A cm−2, in comparison with those of undoped samples. From scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements it is observed that Au doping of the sample also improved the surface morphology and increased the ratio of the high-Tc phase to the low-Tc phase. The possible reasons for the observed improvement in microstructure and superconducting properties of the samples due to Au diffusion are also discussed.  相似文献   

8.
We report magnetization measurements of grain-aligned Ba2Ca2Cu3O6(O,F)2 with Tc?108 K. The interlayer distance of the material is the shortest among known tri-layer superconductors. Unexpectedly, the magnetization data show that the coupling strength between CuO2 layers is rather weak. A direct reflection of the weak coupling is highly suppressed irreversibility line, i.e. a broad reversible region in H-T plane. The decoupling field obtained from the irreversibility line is less than 0.1 T, which is comparable with that of quasi two-dimensional superconductor Bi2Sr2CaCu2O8+δ. Comparison of data with the Hao-Clem model gives characteristic parameters [ξab(0) and λab(0)] and the critical fields [Hc(0) and Hc2c(0)]. A large value of penetration depth, λab(0)=240 nm reflects a small carrier concentration in CuO2 planes, and explains the reason of the weak interlayer coupling.  相似文献   

9.
TlBa2(Ca3?y Be y )Cu4O12?δ (y = 0, 0.5, 1.0, 1.5, 2) samples are synthesized at normal pressure and the influence of doped Be-atoms on the superconductivity parameters at the microscopic level is investigated by carrying out excess conductivity analyses of conductivity data. The samples have shown tetragonal structure and the unit cell volume decreases with increased Be-doping. The onset temperature of superconductivity [T c(onset)] and zero resistivity critical temperature [T c(R = 0)] decrease with increased Be, however, the magnitude of diamagnetism is enhanced with Be (except for Be-doping of y = 1.0). The apical oxygen mode of the type Tl–OA–Cu(2) and CuO2 planar oxygen mode are softened as observed in FTIR absorption measurements. The FIC analyses of conductivity data have shown an increase in the coherence length along the c-axis and inter-plane coupling. The values of B c0(T), B c1(T), J c(0), τ φ are improved with the doping of Be. These observations suggested that due to the proximity effect there is less suppression in the value of the order parameter of the Cooper pairs from |ψ|2 = 1 value in the CuO2 planes in Be-doped samples that maintains the density of carriers in the conducting CuO2 planes [since the |ψ|2 = n/2] which promotes enhancement in the magnitude of superconductivity.  相似文献   

10.
Partial oxidation of Pd in Bi2PdO4 is achieved by substitution of Pb2+ for Bi3+ up to Bi191Pb009PdO4, partial oxidation is necessary to stabilize the isostructural Pt compound, Bi1?xPbxPtO4 within the range 0.33 ? x ? 0.52. In both cases, the tetragonal cell c parameter, therefore metal-metal distance (dM?M = c2), decreases linearly with increasing mean oxidation degree (MOD) of transition metal atom For the insulator B12CuO4, no substitution occurs Powder electrical conductivity measurements of the partially oxidized compounds show that these materials are semiconductors Platinum compounds exhibit relatively high conductivities (σ?10 (Ω cm)?1) and low activation energies (?0 02 eV) with small variations with x Palladium compounds exhibit lower conductivities which linearly increases with MOD These electronic properties are comparable with those of the most one-dimensional Pt or Pd chain conductors.  相似文献   

11.
To investigate the electronic states in YRuB2 and LuRuB2, we have carried out 11B NMR measurements. In the normal state, the spin-lattice relaxation rates 1/T1's in these compounds are proportional to the temperature T. 1/T1's show a small coherence peak just below the superconducting transition temperature Tc and decrease exponentially well below Tc. YRuB2 and LuRuB2 are found to be BCS superconductors with the energy gap 2Δ(0)=3.52 kBTc.  相似文献   

12.
Epitaxial superlattices of half-metal, colossal magnetoresistive La2/3Ca1/3MnO3 (HM-CMR) and high-Tc superconducting YBa2Cu3O7-δ (HTSC) are grown with thick and thin modulation lengths (Λ) of YBCO/LCMO, with Λ = 280 nm and 12.5 nm; respectively, on SrTiO3 (0 0 1) single-crystalline substrates by pulsed laser deposition. Transport measurements R(T) show a resistive state below T = 35 K although the superconducting transition temperature is found to be Tc = 60 K and 63 K for both different superlattices, respectively. The onset of the resistive state coincides with a magnetic transition of the samples. This can be explained by a diffusion of spin-polarized quasiparticles into the superconducting film. Which can be considered as evidence for inverse-proximity effects over a wide temperature range in HM-CMR/HTSC heterostructures.  相似文献   

13.
Polarization dependent X-ray absorption measurements on single crystal Bi2Sr2CuO6 (T c =9 K) and Bi2Sr2CaCu2O8 (T c =80 K) with one and two CuO2 layers, respectively, show no energy shift of the Cu 2p main peak, and no relation between the amount of 3d(m=0, ±1) character and the critical temperatureT c . At grazing incidence a structure in Bi2Sr2CaCu2O8 is found at 937 eV, which can be ascribed to a composite state of Cu 3d(z 2), Cu 4s ando–2p(z).  相似文献   

14.
This work investigates the origin of novel visible photoluminescence (PL) bands observed in the spinel MgAl2O4:Co2+. Besides the well-known fourfold-coordinated Co2+(Td) PL at 670 nm [N.V. Kuleshov, V.P. Mikhailov, V.G. Scherbitsky, P.V. Prokoshin and K.V. Yumashev, J. Lumin. 55 (1993) 265.], a rich structured PL band at 686 nm was also observed that we associate with uncontrolled impurities of sixfold coordinated Cr3+(Oh) by time-resolved spectroscopy and lifetime measurements and their variation with temperature. We also show that the lifetime of the Co2+(Td) emission at 670 nm varies from τ=6.7 μs to 780 ns on passing from T=10 to 290 K. This unexpected behaviour for Td systems is related to the excited-state crossover (4T12E), making the emission band to transform from a narrow-like emission from 2E at low temperature to a broad structureless band from 4T1 at room temperature.  相似文献   

15.
We show that the zero-field normal-state resistivity of temperature-dependent resistivity ρ(T) of SrFe2?xNixAs2 can be reproduced by the expression ρ(T) = ρ0 + c T exp(?2Δ/T). ρ(T) can be scaled using both this expression where the energy scale Δ, c and the residual resistivity ρ0 are scaling parameters and a recently proposed model-independent scaling method (H.G. Luo, Y.H. Su, T. Xiang, Phys. Rev. B 77 (2008) 014529). The scaling parameters have been calculated and the compositional variation of 2Δ(x) has been determined. This dependence show almost a linear decreasing in the underdoped regime similar to that reported for cuprates. The existence of a universal metallic ρ(T) curve in a wide temperature range which, however, is restricted for the underdoped compounds to temperatures above a structural and anitiferromagnetic transition is interpreted as an indication of a single mechanism which dominates the scattering of the charge carriers in SrFe2?xNixAs2 (x = 0–0.3).  相似文献   

16.
The heavy-fermion compound URu2Si2 has mystified researchers since the superconducting state (Tc = 1.45 K) is embedded within the enigmatic ‘‘hidden order” phase (Th = 17.5 K). Here, we report charge and thermal transport measurements on ultraclean single crystals of URu2Si2 with very large residual-resistivity-ratio down to 30 m K (∼Tc/50), which reveal a number of unprecedented superconducting properties. The results provide strong evidence for a new type of unconventional superconductivity with two distinct gaps having different nodal topology. We propose a gap function with chiral d-wave form Δ(k) = Δ0kz(kx + iky). We also demonstrate that a distinct flux line lattice melting transition with outstanding characters occurs well below the upper critical fields even at sub-Kelvin temperature. The intriguing superconducting state of URu2Si2 adds a unique and exciting example to the list of unconventional superconductors.  相似文献   

17.
The effect of the growth rate on the Bi2Sr2CaCu2Oy (Bi2212) thin film quality on MgO substrate is investigated at several growth rates from 0.175 to 3 nm/min. The maximal step height on the film surface is improved from about 100 to 6 nm by the reduction of growth rate to 0.5 nm/min and simultaneously the superconducting critical temperature attaining to a zero resistance Tc(R=0), is also improved from 50 to 63 K. The surface morphologies of the upmost Bi-superconducting thin films with the intermediate layers on MgO substrate is also studied in contrast to that deposited directly on the MgO substrate.  相似文献   

18.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

19.
We study some parameters of superconductors with δ-function type singularities in the electronic density of states (DOS), exhibiting (s+d)-wave symmetry of the order parameter. Starting with a pure s-wave pairing potential Vs, the critical temperature Tc at first slightly increases with increasing the d-wave interaction potential Vd, being determined by this interaction only for stronger Vd values. The ratio R=2|Δ(0)|/kBTc of the mean value of the zero temperature energy gap |Δ(0)| to Tc increases with increasing Vd, reaching a maximum which depends on the mixing interaction term. The maximum values of R are comparable with very high values obtained in some gap measurements. The jump in the specific heat at critical temperature is by a factor 2.4 higher for the extreme singularity of pure s-wave symmetry, as compared with the BCS theory with constant DOS. Such higher values of the jump are in agreement with the experimentally observed values, as well as with the calculations determined by extended saddle points in the electronic bands. By switching the d-wave channel, the value of the jump decreases. The results show the usefulness of calculations with δ-type singularities as a limiting case of very strong singularities in the DOS.  相似文献   

20.
We have investigated intrinsic tunneling spectroscopy (ITS) with short-pulse bias to mesa structures consisting of several layers of intrinsic Josephson junction superlattices of Bi1.8Pb0.2Sr2CaCu2O8+δ(PbBi2212). Through ITS, the superconducting gap 2Δ = 75 meV (at 10 K) is obtained for a PbBi2212 crystal. The large 2Δ value corresponds to the underdoped property of Pb-free Bi2212, which is consistent with the ab-plane transport measurement results performed simultaneously. The normal tunneling resistance RN derived from the high bias region of the IV characteristics is significantly small in comparison with underdoped Bi2212. Moreover, Jc of PbBi2212 is less deviated from the Ambegaokar–Baratoff value than the case of underdoped Bi2212. It is interpreted that the Pb substitution makes the tunnel barrier lower, resulting in a reduced anisotropy and a high Jc even with a lower doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号