首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Isocyanate, polyether polyol, a flame retardant (10 wt%), and aluminum hydroxide/magnesium hydroxide (0, 5, 10, 15, and 20 wt%) are used to form the rigid polyurethane (PU) foam, while nylon nonwoven fabrics and a polyester aluminum foil are combined to serve as the panel. The rigid PU foam and panel are combined to form the rigid foam composites. The cell structure, compressive stress, combustion resistance, thermal stability, sound absorption, and electromagnetic interference shielding effectiveness (EMI SE) of the rigid foam composites are evaluated, examining the effects of using aluminum hydroxide and magnesium hydroxide. Compared with magnesium hydroxide, aluminum hydroxide exhibits superior performance to the rigid foam composites. When aluminum hydroxide is 20 wt%, the rigid foam composite has an optimal density of 0.153 g/cm3, an average cell size of 0.2466 mm, a maximum compressive stress of 546.44 Kpa, an optimal limiting oxygen index (LOI) of 29.5%, an optimal EMI SE of 40 dB, and excellent thermal stability and sound absorption.  相似文献   

2.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

3.
Rigid polyurethane foams with up to 50 wt% of microcapsules from LDPE-EVA containing Rubitherm®RT27 were synthesized. The influence of microcapsules on the foams density, microstructure and mechanical resistance was studied. Cell size and strut and wall thicknesses were analyzed by SEM. The relationships between densities and foam microstructures with their Young's moduli and collapse stress were found by the Gibson and Ashby formulations and the Kerner equation for mechanical properties of composites. It was found a cell structure change from polyhedral closed-cells to spherical or amorphous open-cells. A good agreement between the experimental and theoretical data was observed but requiring a cell form factor. Thus, Fitting parameters confirmed the high trend of these microcapsules to be incorporated into the foam cell walls and the form factors depicted the abrupt change of cell morphology. Thus, these equations are suitable for predicting the mechanical properties of foams containing fillers of low mechanical resistance.  相似文献   

4.
Considering the high cost and injection pressure of conventional foam flooding, foam flooding with low gas/liquid ratio was proposed to enhance the heavy oil recovery. A foamer containing 0.2 wt% α -olefin sulfonate, 0.1 wt% HPAM and 0.5 wt% Na2CO3 was selected for Zhuangxi heavy oil. Then the foam stability and low gas/liquid ratio foam flooding were studied via micro model and sand pack experiments. The results indicate that the foam is much more stable in heavy oil than in diesel; in flooding tests, this foamer with gas/liquid ratio of 0.2:1 increases the oil recovery by 39.8%, which is nearly 11% higher than ASP solution in terms of the same injection volume (0.3PV) and agents.  相似文献   

5.
Solution properties of aqueous film-forming foam (AFFF) formulations containing different xanthan gum contents were investigated first by varying the mass fraction of xanthan gum in the range of 0.1–0.5%. Foam properties and fire-extinguishing performance of the AFFF formulations were then evaluated. Results indicated that xanthan gum content slightly affected surface tension of foam solutions. However, xanthan gum significantly affected viscosity of AFFF concentrates. Foaming of the AFFF formulations was hardly affected by xanthan gum, but foam stability of the compounds was obviously enhanced with the addition of xanthan gum. Optimal xanthan gum content was determined as 0.3%, which resulted in the shortest 90% control time and fire extinguishment time. Burnback time of foams increased with the addition of xanthan gum because of the enhanced foam stability.  相似文献   

6.
In the present study, SiO2 nanoparticles were first hydrophobically modified and then added into anionic surfactant sodium dodecyl sulfate (SDS) stabilized water-based foam to improve the foam stability. The foam stability was experimentally evaluated by measuring surface tension, Zeta potential and half-life of the foam. The foam stabilizing mechanism was also studied from a micro perspective by molecular dynamics simulation through analyzing the equilibration configuration and MSD curve of both SDS surfactant and water molecules. The results show that foam exhibits an optimal stability when SiO2 concentration is 0.35 wt% under a specific surfactant concentration (0.5 wt%) in this work. The addition of SiO2 nanoparticles with suitable concentration could improve the adsorption between SDS molecules and nanoparticles, thus limiting the movement of SDS and restricting the movement of surrounding water molecules, which is beneficial to enhance the foam stability.  相似文献   

7.
Nonaqueous foams stabilized by lamellar liquid crystal (L alpha) dispersion in diglycerol monolaurate (designated as C12G2)/olive oil systems are presented. Foamability and foam stability depending on composition and the effects of added water on the nonaqueous foaming behavior were systematically studied. It was found that the foamability increases with increasing C12G2 concentration from 1 to 3 wt% and then decreases with further increasing concentration, but the foam stability increases continuously with concentration. Depending on compositions, foams are stable for a few minutes to several hours. Foams produced by 10 wt% C12G2/olive oil system are stable for more than 6 h. In the study of effects of added water on the foaming properties of 5 wt% C12G2/olive oil system, it was found that the foamability and foam stability of 5 wt% C12G2/olive oil decreases upon addition of 1 wt% water, but with further increasing water, both the foamability and foam stability increase. Foams with 10% water added system are stable for approximately 4 h. Phase behavior study of the C12G2 in olive oil has shown the dispersion of L alpha particles in the dilute regions at 25 degrees C. Thus, stable foams in the C12G2/olive oil system can be attributed to L alpha particle, which adsorb at the gas-liquid interface as confirmed by surface tension measurements and optical microscopy. Laser diffraction particle size analyzer has shown that the average particle diameter decreases with increasing the C12G2 concentration and, hence, the foams are more stable at higher surfactant concentration. Judging from foaming test, optical micrographs, and particle size, it can be concluded that stable nonaqueous foams in the studied systems are mainly caused by the dispersion of L alpha particles and depending on the particle size the foam stability largely differs.  相似文献   

8.
Infrared spectra of hydrogen-carbonyl sulfide clusters containing paraH2, orthoH2, or HD have been studied in the 2060 cm(-1) region of the C-O stretching vibration. The clusters were formed in pulsed supersonic jet expansions and probed using a tunable infrared diode laser spectrometer. Simple symmetric rotor type spectra were observed and assigned for clusters containing up to N = 7 hydrogen molecules. There was no resolved K structure, and Q-branch features were present for orthoH2 and HD but absent for paraH2. These characteristics can be rationalized in terms of near symmetric rotor structures, very low effective rotational temperatures (0.15 to 0.6 K), and nuclear spin statistics. The observed vibrational shifts were compared with those from recent observations on the same clusters embedded in helium nanodroplets. The observed rotational constants for the paraH2 clusters are in good agreement with a recent quantum Monte Carlo simulation. Some mixed clusters were also observed, such as HD-HD-He-OCS and paraH2 - orthoH2 - OCS.  相似文献   

9.
Adding high loadings of nanoparticles can remarkably alter the functionality of polymer nanocomposite foams. Therefore, this dramatic change was studied at the percolation threshold as a point to predict the properties of foamed nanocomposites using the viscoelastic characteristics of un-foamed ones. In this research, the effect of incorporating 10–40 wt% of ZnO nanoparticles on rheological properties of PS/ZnO samples was investigated. Then, these samples were foamed at processing temperatures of 80 and 120 °C to study morphology and electromagnetic properties. First, the rheological study showed that the storage modulus of nanocomposites increased significantly above 20 wt% of nanoparticles. A connected network of nanoparticles altered the microstructure of nanocomposite at this rheological percolation. The morphological results show a higher cell density for foamed samples above the rheological percolation. From electromagnetic properties, the effect of ZnO connected network is obvious on the absorption enhancement for 30 and 40 wt% and only for 40 wt% of ZnO at 80 and 120 °C, respectively. Therefore, the viscoelastic properties of samples are still dominant at the lower temperature, but the foam structure became more important at the higher temperatures. This shows that the role of the filler network faded at the higher temperature and electromagnetic properties were changed with the foam structure. The microstructure expansion results in the decrease of filler amount at a fixed volume of foams, so more filler fraction is required to form a connected network of nanoparticles.  相似文献   

10.
We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an atmosphere of carbon dioxide or nitrogen in a high-pressure cell at 250 bar. Subsequent heating to temperatures close to but still below 100 °C followed by sudden expansion and simultaneous cooling resulted in closed-cell microcellular foam. The spherical gliadin templates along with the resulting foam have been analyzed by scanning electron microscope (SEM) pictures. The size distribution of the primary particles shows diameters peaked around 0.54 μm, and the final foam cell size peaks around 1.2 μm, at a porosity of about 80 %. These are the smallest foam cell sizes ever reported for gliadin. Interestingly, the cell walls of these microcellular foams are remarkably thin with thicknesses in the lower nanometer range, thus nourishing the hope to be able to reach gliadin nanofoam.  相似文献   

11.
Density functional theory study of small vanadium oxide clusters   总被引:2,自引:0,他引:2  
Density functional theory is employed to study structure and stability of small neutral vanadium oxide clusters in the gas phase. BPW91/LANL2DZ level of theory is used to obtain structures of VOy (y=1-5), V2Oy (y=2-7), V3Oy (y=4-9), and V4Oy (y=7-12) clusters. Enthalpies of growth and fragmentation reactions of the lowest energy isomers of vanadium oxide molecules are also obtained to study the stability of neutral vanadium oxide species under oxygen saturated gas-phase conditions. Our results suggest that cyclic and cage-like structures are preferred for the lowest energy isomers of neutral vanadium oxide clusters, and oxygen-oxygen bonds are present for oxygen-rich clusters. Clusters with an odd number of vanadium atoms tend to have low spin ground states, while clusters with even number of vanadium atoms have a variety of spin multiplicities for their ground electronic state. VO2, V2O5, V3O7, and V4O10 are predicted to be the most stable neutral clusters under the oxygen saturated conditions. These results are in agreement with and complement previous gas-phase experimental studies of neutral vanadium oxide clusters.  相似文献   

12.
PREPARATION AND CHARACTERIZATION OF PVA COATED MAGNETIC NANOPARTICLES*   总被引:4,自引:0,他引:4  
Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitationof Fe(Ⅱ)/Fe(Ⅲ) salts in 1.5 mol/L NH_4OH solution at 70℃ in the presence of PVA. The resultant colloidal particles havecore-shell structures, in which the iron oxide crystallites form the cores and PVA chains form the shells. The hydrodynamicdiameter of the colloidal particles is in the range of 108 to 155 nm, which increases with increasing PVA concentration from5 wt% to 20 wt%. The size of the magnetic cores is ca. 5~10 nm, which is relatively independent of PVA concentration.Under transmission electron microscopic (TEM) examination, the magnetic cores exhibit somewhat irregular shapes varyingfrom spherical, oval, to cubic. Magnetometry measurement revealed that the PVA coated magnetic particles aresuperparamagnetic. The saturation magnetization of 5 wt% and 20 wt% PVA ferrofluids at 300 K is 54 and 49 emu/g.respectively. All the PVA ferrofluids exhibited excellent colloidal stability in pure water and phosphate buffer saline (PBS,pH=7.4). The ferrofluids can remain stable in above solutions for more than three months at 4℃.  相似文献   

13.
High surface area, high porosity, nanometric polygonal silica foams with hierarchically connected and uniformly sized pore systems are reported here. We observe a remarkable increase in foam cell sizes from mesoscopic to macroscopic dimensions upon swelling the self-assembled template with oil. The resultant structures resemble classical macroscopic soap foams and display, among other features, Plateau borders and volume fractions approaching the dry limit of 100%. In well-developed foams of this kind, dimensionally isometric polyhedral cells are connected by relatively short, flat cylindrical mesopores through polyhedral faces and micropores through the walls. For one sample, with approximately 75 nm diameter primary foam cells, we infer three separate sets of cell-connecting mesopores puncturing tetragonal, pentagonal, and hexagonal faces of the component polyhedra. A multiple step model of foam formation is discussed where an organic silica precursor progressively hydrolyzes and condenses as a growing flexible shell from the core-corona interface of oil-swollen triblock copolymer micelles or microemulsion droplets, inducing a clouding phenomena in the otherwise stabilizing poly(ethylene oxide) chains, leading to aggregation, deformation, and jamming to high volume fractions.  相似文献   

14.
Mechanical properties of anodized aluminum were studied using the results of dilatometric measurements of thermal expansion of anodized Al (the symmetric structure Al(2)O(3)-Al-Al(2)O(3)). The 100-microm-thick Al(2)O(3 )oxide layer was formed in 4% aqueous solution of oxalic acid in the galvanostatic regime at a current density of 20 mA cm(-2). Measurements of thermal expansion of anodized Al (Al and Mg alloy of 2.7-3.2%, and 0.3-0.6% Mn, and 0.5-0.8% Si) with the thickness of initial Al from 0.6 to 3.7 mm and ceramic from Al(2)O(3) in the temperature range of 20-500 degrees C were conducted using an automatic quartz dilatometer. Intrinsic stress in the Al layer, the values of the modulus of elasticity, and the porosity of Al oxide formed on Al of different thickness are calculated.  相似文献   

15.
We present a study of the stability of clusters models made of a numberN of atoms in the range 500 to 6000 atoms, freely interacting through the Lennard-Jones potential. The potential energy per atom, calculated for relaxed models, shows that stable models belong to an icosahedral sequence whenN<1600 and to a decahedral sequence beyond. A coexistence size range of both structures is discussed in connection with experimental results on argon clusters in free jet expansions.  相似文献   

16.
The stability criteria of liquid foams, stabilized by solid particles have been derived, based on the interfacial separating pressure, acting between two neighboring bubbles (foam cells). Different structures of solid particles in the cell walls have been considered, all being able to stabilize liquid foams with an increasing probability, according to the following row: structure LP1 (loosely packed single layer of particles) → structure CP1 (closely packed single layer of particles) → structure LP2C (loosely packed double layer of clustered particles) → structure LP2+C (loosely packed ‘double+’ layer of clustered particles) → structure CP2 (closely packed double layer of particles) → structure CP2+ (closely packed ‘double+’ layer of particles). It has been shown that the contact angle should be higher than a certain value Θo, in order to ensure stability of bubble–particles agglomerates. On the other hand, different structures of particles can stabilize the foam, if the contact angle is below the certain value (90° for the CP1 and LP1 structures, 129° for the CP2, LP2C and LP2+C structures and 180° for the CP2+ structure). The optimum value of the contact angle, being able to stabilize the foam is a difficult function of different parameters, but has been found in the interval between 50 and 90°. It has been shown that the possibility to stabilize liquid foams is connected with the value of the dimensionless quantity PRs/σ (P: the pressure, destabilizing the foam; Rs: the radius of the stabilizing particles; σ: the surface tension of the liquid). When PRs/σ>40, foam stabilization is absolutely impossible. When PRs/σ<40, foam stabilization becomes possible, but it has high probability only at PRs/σ<4. From this condition the maximum size of the particles, being able to stabilize liquid foams can be found. Trial calculations showed that particles smaller than 3 and 30 μm in diameter are requested for stabilizing water based, and liquid aluminum based foams, respectively.  相似文献   

17.
This article reports on the morphology, interfacial interaction, thermal stability, and thermal degradation kinetics of polycarbonate (PC)/mesoporous silica (MCM-41) composites with various MCM-41 contents, prepared by melt compounding. The composites with low filler loadings (<0.3?wt%) maintained their transparency because of the well dispersed MCM-41 particles, but at higher filler loadings the composites lost their transparency due to the presence of agglomerates. The presence of agglomerates decreased the thermal stability of PC due to the reduced effectiveness of the particles to immobilize the polymer chains, free radicals, and volatile degradation products.  相似文献   

18.
High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.  相似文献   

19.
Supersonic jet expansions of mixtures of nitric oxide with either nitrous oxide or carbon dioxide have been investigated over a wide range of relative concentrations. Mixed molecular cluster ions of the form (NO) m + (N2O)n and (NO) m + (CO2)n are detected following non-resonant two-photon ionization. Over a wide range of intermediate concentrations, the cluster ion distributions (NO) 3 + (N2O)n and (NO) 3 + (CO2)n with n30 are significantly more intense than clusters containing other numbers of nitric oxide molecules. The extra abundance of these species is attributed to their especially stable structures and several possible forms are discussed. An intriguing possibility involves a stable cyclic nitric oxide trimer (or ion) when combined with nitrous oxide or carbon dioxide clusters.  相似文献   

20.
The controlled hydrolysis of metal alkoxides in the presence of methacrylic acid results in metal oxide clusters capped by polymerizable methacrylate ligands. Radical polymerization of small portions of such clusters with organic co-monomers allows the preparation of an interesting new type of inorganic-organic hybrid polymers in which the metal oxo clusters efficiently crosslink the organic polymers chains. SAXS investigations revealed that the clusters may aggregate to form clusters of clusters. The properties of the hybrid materials, such as thermal stability, swelling, dielectric and mechanical properties, depend not only on the portion of incorporated cluster, i.e. the crosslinking density, but also on the kind of employed cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号