首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct injection spark ignition (DISI) engines have been widely used in passenger cars due to their lower fuel consumption, better controllability, and high efficiency. However, DISI engines are suffering from wall wetting, imperfect mixture formation, excess soot emissions, and cyclic variations. Applying a new fuel atomization technique and using biofuels with their distinctive properties can potentially aid in improving DISI engines. In this research, the effects of isobutanol and 2-butanol and their blends with Toluene Primary Reference Fuel (TPRF) on spray characteristics, DISI engine combustion, and particle number (PN) emissions are investigated for conditions with and without flash boiling of the injected fuel. Spray characteristics are investigated using a constant volume chamber. Then, the combustion, flame propagation, and PN emissions are examined using an optical DISI engine. The fuel temperature is set to 298 K and 453 K for liquid injection and flash boiling injection, respectively. The tested blending ratio is 30 vol% butanol isomers and 70 vol% TPRF. The results of the spray test reveal that liquid fuel plumes are distinctly observed, and butanol blends show a slightly wider spray angle with lower penetration length compared to TPRF. However, under flash boiling injection, the sprays collapse towards the injector axis, forming a more extended single central vapor jet due to the plumes' interaction. Meanwhile, butanol blends yield a narrow spray angle with more extended penetration compared to TPRF. The flame visualization test shows that the flash boiling injection reduced yellow flames compared to liquid fuel injection, reflecting the improvements in mixture formation. Thus, improvements were noted in the heat release and PN emissions. Butanol addition reduced the PN emissions by 43% under regular liquid injection. Flash boiling injection provided an additional 25% reduction in PN emissions.  相似文献   

2.
A multicomponent vaporization model is integrated with detailed fuel chemistry and soot models for simulating biodiesel–diesel spray combustion. Biodiesel, a fuel mixture comprised of fatty-acid methyl esters, is an attractive alternative to diesel fuel for use in compression-ignition engines. Accurately modelling of the spray, vaporization, and combustion of the fuel mixture is critical to predicting engine performance using biodiesel. In this study, a discrete-component vaporization model was developed to simulate the vaporization of biodiesel drops. The model can predict differences in the vaporization rates of different fuel components. The model was validated by use of experimental data of the measured biodiesel drop size history and spray penetration data obtained from a constant-volume chamber. Gas phase chemical reactions were simulated using a detailed reaction mechanism that also includes PAH reactions leading to the production of soot precursors. A phenomenological multi-step soot model was utilized to predict soot emissions from biodiesel–diesel combustion. The soot model considered various steps of soot formation and destruction, such as soot inception, surface growth, coagulation, and PAH condensation, as well as oxidation by oxygen and hydroxyl-containing molecules. The overall numerical model was validated with experimental data on flame structure and soot distributions obtained from a constant-volume chamber. The model was also applied to predict combustion, soot and NOx emissions from a diesel engine using different biodiesel–diesel blends. The engine simulation results were further analysed to determine the soot emissions characteristics by use of biodiesel–diesel fuels.  相似文献   

3.
以R600a压力式封闭系统喷雾冷却过程为研究对象,对其换热过程进行分析。对液滴撞击热面后的状态进行建模,分析了其运动状态。通过忽略液膜的对流换热,引入韦伯数来简化并修正雾滴与热源表面的对流换热系数关联式;借鉴二次成核理论,通过单位时间内,单位面积上覆盖的雾滴数量对核态沸腾换热系数关联式修正。通过上述分析,以对流换热和核态沸腾换热两种机理为中心,建立了新的换热系数关联式。通过与其他文献的关联式、实验测量值进行比较、不同工质进行比较、不同实验系统比较,发现该式预测值和实验测量值偏差在±20%以内,能够很好地预测压力式封闭系统喷雾冷却过程的换热系数。  相似文献   

4.
柴油燃料HCCI燃烧影响因素的试验研究   总被引:4,自引:0,他引:4  
本文采用在进气上止点附近进行柴油喷射,利用缸内高温残余废气促进燃油蒸发形成均质混合气,实现了柴油燃料的均质压燃(HCCI)。试验结果表明柴油燃料HCCI燃烧的放热规律呈现低温和高温放热两个阶段,并且NOx排放可以降低95%-98%。本文主要研究了影响HCCI燃烧的因素,指出负荷增大、进气温度增加和负气门重叠期的增加使HCCI着火提前,而外部EGR率的增大可以推迟着火。因此对于低温自燃性好的燃料,冷EGR是控制其HCCI着火燃烧过程的有效措施。  相似文献   

5.
Gas turbines, liquid rocket motors, and oil-fired furnaces utilize the spray combustion of continuously injected liquid fuels. In most cases, the liquid spray is mixed with an oxidizer prior to combustion, and further oxidizer is supplied from the outside of the spray to complete diffusion combustion. This rich premixed spray is called “partially premixed spray.” Partially premixed sprays have not been studied systematically although they are of practical importance. In the present study, the burning behavior of partially premixed sprays was experimentally studied with a newly developed spray burner. A fuel spray and an oxidizer, diluted with nitrogen, was injected into the air. The overall equivalence ratio of the spray jet was set larger than unity to establish partially premixed spray combustion. In the present burner, the mean droplet diameter of the atomized liquid fuel could be varied without varying the overall equivalence ratio of the spray jet. Two combustion modes with and without an internal flame were observed. As the mean droplet diameter was increased or the overall equivalence ratio of the spray jet was decreased, the transition from spray combustion only with an external group flame to that with the internal premixed flame occurred. The results suggest that the internal flame was supported by flammable mixture through the vaporization of fine droplets, and the passage of droplet clusters deformed the internal flame and caused internal flame oscillation. The existence of the internal premixed flame enhanced the vaporization of droplets in the post-premixed-flame zone within the external diffusion flame.  相似文献   

6.
直喷发动机燃油喷雾撞击壁面形成油膜,导致燃烧效率降低,颗粒物排放增加。伴随撞壁的动态传热过程对油膜蒸发具有重要影响。本文针对正戊烷、甲醇、甲醇汽油混合燃料瞬态喷雾撞击壁面,研究了不同条件下蒸发性对燃油瞬态喷雾撞击壁面动态传热影响。结果表明,提高喷油温度可促进燃油雾化,增大喷油压力或降低喷油距离可提高液滴撞壁强度,缩短液膜存在时间。撞壁瞬态温度与热流密度动态变化特征受燃油蒸发性与喷雾条件联合影响。  相似文献   

7.
8.
One of the major concerns in combustion engines is the sensitivity of engine performance to fuel properties. Recent works have shown that even slight differences in fuel properties can cause significant changes in performance and emission of an engine. In order to design the combustion engines with multi-fuel flexibilities, the precise assessment of fuel sensitivity on liquid jet atomization process is a prerequisite since the resulting fuel/air mixture is critical to the subsequent combustion process. The present study is focusing on the effect of physical fuel properties, mostly viscosity difference, on the breakup process of the liquid jet injected into still air. Two different jet fuels, CAT-A2 and CAT-C3, are considered here as surrogates for a fossil-based fuel and a bio-derived high-viscosity alternative fuel. The simulations are performed using the volume-of-fluid (VoF) interface tracking method coupled to Lagrangian particle method in order to capture the breakup instabilities of jets and the resulting droplets. The investigations take the actual geometry of the injector into account to resolve the unsteady flow phenomena inside the nozzle that impact the turbulence transition and atomization. The simulation results are compared to the experimental measurement using X-ray radiography. Both simulation and X-ray measurements consistently describe the effects of different fuels on the fundamental properties of atomization including the breakup length, transverse liquid volume fraction and the droplet sauter-mean-diameter. The application of a Detailed Numerical Simulation approach complemented by unique X-ray diagnostics is novel and providing new understanding and research directions in engine spray dynamics.  相似文献   

9.
Experimental evidence seems to indicate that the life of a laminar spherical flame front propagating through a fresh mixture of air and liquid fuel droplets can be roughly split into three stages: (1) ignition, (2) radial propagation with a smooth flame front and (3) propagation with flame front cellularization and/or pulsation. In this work, the second stage is analysed using the slowly varying flame approach, for a fuel rich flame. The droplets are presumed to vaporize in a sharp front ahead of the reaction front. Evolution equations for the flame and evaporation fronts are derived. For the former the combined effect of heat loss due to droplet vaporization and radiation plays a dominant explicit role. In addition, the structure of the evaporation front is deduced using asymptotics based on a large parameter associated with spray vaporization. Numerical calculations based on the analysis point to the way in which the spray modifies conditions for flame front extinction. Within the framework of the present simplified model the main relevant parameters turn out to be the initial liquid fuel load in the fresh mixture and/or the latent heat of vaporization of the fuel.  相似文献   

10.
A method for the general correlation of heat transfer effectiveness for sprays impacting vertically downward on a high-temperature surface has been developed. A dimensional analysis showed that the mass velocity of the spray can be substituted for the droplet velocity in the droplet Reynolds and Weber numbers, greatly improving the correlation with the heat flux data in the film boiling regime. The spray Reynolds number, defined as Re s = Gd/ w , and spray Weber number, We s = G 2 d/ 𝜌 σ , were shown to correlate data from many authors covering a wide range of spray parameters. This correlation supports the results of previous parametric experiments, and is analogous to correlations developed for the critical heat flux of sprays and circular jets. Dependence of the heat transfer performance on spray mass flux and droplet diameter represents the influence of the overall heat transfer capacity of the spray as well as the contribution of droplet interactions. The Leidenfrost temperature of the spray was also shown to be dependent on the spray Weber number.  相似文献   

11.
An experimental and numerical study of combustion of a gasoline certification fuel (‘indolene’), and four (S4) and five (S5) component surrogates for it, is reported for the configurations of an isolated droplet burning with near spherical symmetry in the standard atmosphere, and a single cylinder engine designed for advanced compression ignition of pre-vaporized fuel. The intent was to compare performance of the surrogate for these different combustion configurations and to assess the broader applicability of the kinetic mechanism and property database for the simulations. A kinetic mechanism comprised of 297 species and 16,797 reactions was used in the simulations that included soot formation and evolution, and accounted for unsteady transport, liquid diffusion inside the droplet, radiative heat transfer, and variable properties. The droplet data showed a clear preference for the S5 surrogate in terms of burning rate. The simulations showed generally very good agreement with measured droplet, flame, and soot shell diameters. Measurements of combustion timing, in-cylinder pressure, and mass-averaged gas temperature were also well predicted with a slight preference for the S5 surrogate. Preferential vaporization was not evidenced from the evolution of droplet diameter but was clearly revealed in simulations of the evolution of mixture fractions inside the droplets. The influence of initial droplet diameter (Do) on droplet burning was strong, with S5 burning rates decreasing with increasing Do due to increasing radiation losses from the flame. Flame extinction was predicted for Do =3.0 mm as a radiative loss mechanism but not predicted for smaller Do for the conditions of the simulations.  相似文献   

12.

A simple model of a flame front propagating through a fuel-rich droplet–vapour–air mixture is presented in which the fuel droplets are assumed to evaporate in a sharp front ahead of the reaction front. By performing a linear stability analysis neutral stability boundaries are determined. It is shown that the presence of the spray of droplets in the fresh mixture can have a profound effect by causing cellularization of the flame front. Specifically, we demonstrate that under certain circumstances a spray flame can be cellular when its equivalent non-spray flame is completely stable. Furthermore, it is shown that even when the non-spray flame is itself cellular the equivalent spray flame will have a finer cellular structure. These theoretical predictions verify qualitatively for the first time independent experimental observations from the literature. It is thus shown that the primary effect of the spray on the stability of these flames is due to heat loss from the absorption of heat by the droplets for vaporization. The influence of the initial liquid fuel loading and the latent heat of vaporization on the critical wavenumber associated with cellularity provide further evidence of the responsibility of the heat loss mechanism for these spray-related phenomena. Finally, the cellularity of the spray flames with their attendant increase in flame front area suggest a plausible rationale for the experimentally observed burning velocity enhancement induced by the use of a spray of fuel droplets.  相似文献   

13.
This paper addresses an experimental study of the effects of the topography of surfaces impacted by fuel sprays on the process of fuel–air mixing in internal combustion engines. The experiments reported here consider the use of a simplified flow configuration consisting of individual droplets impacting onto flat surfaces with different surface topographies, roughness and temperatures. The main parameters which were systematically varied are surface wettability and topography and liquid viscosity. The analysis considers the onset of splash, which involves the identification and characterization of different disintegration mechanisms. The characterization is performed in terms of crown morphology, temporal evolution and secondary droplet characteristics, for different boiling regimes. The results are interpreted to better understand the influence of the nature of the surface in the efficiency of the disintegration mechanisms.  相似文献   

14.
The combustion of two fuels with disparate reactivity such as natural gas and diesel in internal combustion engines has been demonstrated as a means to increase efficiency, reduce fuel costs and reduce pollutant formation in comparison to traditional diesel or spark-ignited engines. However, dual fuel engines are constrained by the onset of uncontrolled fast combustion (i.e., engine knock) as well as incomplete combustion, which can result in high unburned hydrocarbon emissions. To study the fundamental combustion processes of ignition and flame propagation in dual fuel engines, a new method has been developed to inject single isolated liquid hydrocarbon droplets into premixed methane/air mixtures at elevated temperatures and pressures. An opposed-piston rapid compression machine was used in combination with a newly developed piezoelectric droplet injection system that is capable of injecting single liquid hydrocarbon droplets along the stagnation plane of the combustion chamber. A high-speed Schlieren optical system was used for imaging the combustion process in the chamber. Experiments were conducted by injecting diesel droplet of various diameters (50 µm < do < 400 µm), into methane/air mixtures with varying equivalence ratios (0 < ϕ < 1.2) over a range of compressed temperatures (700 K < Tc < 940 K). Multiple autoignition modes was observed in the vicinity of the liquid droplets, which were followed by transition to propagating premixed flames. A computational model was developed with CONVERGE™, which uses a 141 species dual-fuel chemical kinetic mechanism for the gas phase along with a transient, analytical droplet evaporation model to define the boundary conditions at the droplet surface. The simulations capture each of the different ignition modes in the vicinity of the injected spherical diesel droplet, along with bifurcation of the ignition event into a propagating, premixed methane/air flame and a stationary diesel/air diffusion flame.  相似文献   

15.
16.
In direct-injection spark-ignition engines, fuel films formed on the piston surface due to impinging sprays are a major source of soot. Previous studies investigating the fuel films and their correlation to soot production were mostly performed in model experiments or optical engines. These experiments have different operating conditions compared to commercial engines. In this work, fuel films and soot are visualized in an all-metal engine with endoscopic access via laser-induced fluorescence (LIF) and natural incandescence, respectively. Gasoline and a mixture of isooctane/toluene were used as fuel for the experiments. The fuel films were excited by 266 nm laser pulses and visualized by an intensified CCD camera through a modular UV endoscope. Gasoline yielded much higher signal-to-noise ratio, and this fuel typically took an order of magnitude longer to evaporate than isooctane/toluene. The effects of injection time, injection pressure, engine temperature, and combustion on the fuel-film evaporation time were investigated. This film survival time was reduced with higher engine temperature, higher injection pressure, and later injection time, with engine temperature being the most significant parameter, whereas skip-fired combustion had very little effect on the film survival time. In complementary experiments, LIF from fuel films and soot incandescence were simultaneously visualized by an intensified double-frame CCD camera. At lower engine temperatures the fuel films remained distinct, and soot formation was limited to regions above the films, whereas at higher temperatures, fuel films, and hence the soot, appeared to be spread over the whole piston surface. Finally, high-speed imaging showed the spray, chemiluminescence, and soot incandescence, with results broadly consistent with fuel-film LIF and soot incandescence imaging.  相似文献   

17.
DNS is performed for a statistically one dimensional layer of a spray region resembling diesel engine conditions. The group and collective combustion regimes are identified according to the ratio of the chemical and transport time scales for a single droplet. The statistics in group combustion are similar with those in gas phase combustion. The collective combustion regime involves interspersed rich regions with different dissipation characteristics. Reasonable agreements are shown with the scaled AMC model and the linear evaporation model in the ranges of meaningful probability. Initially the evaporation terms are dominant in the budgets of the conditional enthalpy equation. After ignition the chemical reaction term becomes dominant to be balanced by the time rate of change term. For modeling turbulent spray combustion it may not be essential to consider detailed micro structures around each droplet, unless in the droplet combustion regime.  相似文献   

18.
Extensive efforts have been made in achieving leaner combustion for gasoline direct injection (GDI) engines to further improve the thermal efficiency and reduce harmful emissions. Among these techniques, increasing ignition energy has been proven to be an effective method to achieve lean combustion. Few targets the atomization process of the fuel in generating a more homogenous fuel-air mixture, which is believed to be able to extend the lean flammability limit of the engine. This investigation explores the use of flash boiling atomization, a technique to improve spray atomization via elevating the fuel temperature, in combination with high energy ignition technique for better GDI engine performance under lean-burn conditions. For such purposes, a single-cylinder, optical GDI engine was used with high-speed imaging techniques, along with other measurement instruments. The fuel was preheated by a heating element and high energy ignitions were generated by a customized ignition system. ignitions with various initial currents (transistor coil ignition (TCI), 250 mA, and 500 mA) under both sub-cooled and flash boiling conditions were examined using different excess air ratios. It was found that using flash boiling atomization has extended the lean limit from 1.95 to 2.10 under the 500 mA initial current ignition. Other critical parameters such as indicative mean effective pressure (IMEP), emissions such as CO, NOx, THC were also analyzed to demonstrate the impacts of high energy ignition and flash boiling atomization.  相似文献   

19.
液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
何博  何浩波  丰松江  聂万胜 《物理学报》2012,61(14):148201-148201
凝胶推进剂虽然兼具有液体推进剂流量可控和固体推进剂长期可储存等优点, 但凝胶喷雾液滴蒸发燃烧问题却一直困扰着凝胶推进剂研制及燃烧室设计工作, 阻碍了凝胶推进剂实际工程应用.设计实现了凝胶单液滴蒸发燃烧实验系统, 通过某型有机凝胶偏二甲肼(UDMH)单液滴在四氧化二氮蒸气中的蒸发燃烧实验现象, 进一步深入分析了凝胶液滴蒸发燃烧机理.根据实验中凝胶单液滴在不同阶段的蒸发特性, 建立了有机凝胶喷雾液滴在胶凝剂膜形成、膨胀、破裂三个不同蒸发阶段的多组分蒸发模型, 采用初步选定的模型参数及物性参数对凝胶单液滴在高温气体环境中的蒸发全过程进行了仿真计算, 并与常规液体液滴的仿真结果进行了对比分析.结果表明,凝胶喷雾液滴表面胶凝剂含量在蒸发初期增加比较缓慢, 但在某临界时刻后的极短时间内迅速升高至形成胶凝剂膜的质量分数95%, 导致表面质量流率迅速下降至0,表面温度则快速上升至UDMH推进剂沸点.胶凝剂膜形成后, 液滴半径及表面UDMH蒸气质量分数出现了实验现象中凝胶液滴反复膨胀-破裂的震荡现象, 液滴表面温度维持在略高于沸点的某温度范围内,凝胶液滴内部的沸腾蒸发明显强于液体液滴表面稳态蒸发流率, 使得凝胶喷雾液滴生存时间小于常规液体液滴.  相似文献   

20.
A bench for studying heat exchange between a pulsed spray and a surface heated to a temperature below the boiling point is designed. A calorimeter to measure the integral heat exchange accurate to 1.5–3.0% and equipment generating the pulse spray are described. The main parameters of the forming gas-drop-let flow (the gas and liquid velocities, the variation of the hydropulse duration and the size of flow-constituting droplets when moving toward a heat exchanger, and the liquid concentration distribution over the cross section and along the flow) and respective measuring techniques are given. It is shown that the duration of a droplet train in the flow influences heat-and-mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号