首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
基于高光谱的土壤有机质含量估算研究   总被引:21,自引:0,他引:21  
高光谱遥感技术以其光谱分辨率高、波段连续性强、数据丰富的特点,因而在土壤养分研究中得到广泛应用.通过土壤钉机质的高光谱遥感分析,可以充分了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供科学依据.本文基于江西省余江县和泰和县采集的34个红壤土样350~2 500 nm波段的光谱曲线,研究了土壤光谱与土壤有机质含量之间的关系.先对土壤反射率光谱进行两种变换:一阶微分(R')、倒数的对数log(1/R),然后在提取特征吸收波段的基础上,运用多元逐步线性回归法和偏最小二乘回归法建立相应的估算模型,并对模型进行检验.结果表明,偏最小二乘回归法优于多元逐步线性回归法,其建立的高光谱估算模型具有快速估算土壤中有机质含量的潜力.  相似文献   

2.
矿区土壤Cu含量高光谱反演建模   总被引:4,自引:0,他引:4  
为探究高光谱遥感手段反演土壤Cu含量方法的可行性,以湖南省某矿区为例,利用ASD地物光谱仪和实验室电感耦合等离子发射光谱法测定83个土壤样品350~2 500 nm光谱信号和Cu含量。在光谱重采样、一阶/二阶微分、标准正态变换预处理对比分析基础上,分别采用主成分分析与相关分析对潜在建模变量进行初步筛选,运用逐步回归方法确定最终模型变量,建立土壤Cu含量反演模型,基于最优模型识别Cu含量光谱指示特征波段。结果表明,相对于传统主成分分析方法,标准正态变换后的光谱全要素主成分分析逐步回归建模方法因保留土壤样品弱光谱信号能有效提升土壤Cu含量估算能力,R2达0.86,模型对于预测样本的估计效果较好,建模样本和预测样本的残差分别为0.76和1.29,且通过F检验;360~400,922~1 009,1 833~1 890与2 200~2 500 nm波段对研究区土壤Cu含量有较好指示性。研究结果将丰富南方矿区土壤Cu含量估算典型案例,同时为发展基于高光谱遥感的土壤环境监测手段提供理论支撑。  相似文献   

3.
矿区复垦农田土壤重金属含量的高光谱反演分析   总被引:5,自引:0,他引:5  
以矿区复垦农田土壤为研究对象,利用实验室获取的土壤重金属元素砷(As)、锌(Zn)、铜(Cu)、铬(Cr)和铅(Pb)的含量与土壤可见近红外高光谱数据建立重金属元素含量的定量估算模型。为了保证模型预测的精度和稳定性,首先,对原始光谱数据进行平滑处理,并进行光谱变换,即:一阶导数,标准正态变量变换及连续统去除变换;然后,通过相关性分析提取不同变换光谱的特征波段;最后,将最小二乘支持向量机与传统的多元线性回归和偏最小二乘回归方法的结果相比较。研究表明:(1)以不同变换光谱数据建立反演模型均有较好的稳定性并达到一定精度,其中以最小二乘支持向量机方法优于偏最小二乘回归优于多元线性回归模型(除少数几个情况外);(2)从不同光谱变换数据中提取的光谱特征对反演模型结果有一定影响,其中以连续统去除和标准正态变量变换建模结果较好,一阶导数变换稍差。因此,利用高光谱遥感技术来定量估算土壤重金属含量是可行的,而且,必要的光谱预处理对提高估算模型的精度很有帮助。  相似文献   

4.
基于小波分析的土壤碱解氮含量高光谱反演   总被引:1,自引:0,他引:1  
选取新疆奇台县的134个土壤样本,利用土壤反射率对数的一阶导数光谱分别对四种小波函数进行多层离散分解,采用PLSR方法分别建立了土壤碱解氮含量的反演模型,并对其精度值进行检验。结果表明:小波分解获得的各层低频系数以1~3层较高,而其余各层则较低。所有函数分解的6层中,均以第2层低频系数建模的精度最高,随着分解层数的增加,其精度值和显著性明显降低。相同尺度下,采用四种小波函数的低频系数构建的反演模型的精度差异较小,而Bior1.3为最优函数;基于Bior1.3分解的ca2低频系数建模的R2达0.977,RMSE仅为7.51 mg·kg-1,且为极显著,为最佳反演模型,经检验,可用以快速、准确估算土壤高光谱碱解氮含量。  相似文献   

5.
基于PCA的土壤Cd含量高光谱反演模型对比研究   总被引:4,自引:0,他引:4  
土壤重金属污染对人类健康造成了极大的威胁,如何快速摸清土壤污染情况尤为重要。高光谱遥感具备光谱分辨率高,快速无损等优势,使其在土壤组分反演方面具有巨大的潜力。针对高光谱信息冗余及光谱变换对土壤镉(Cd)含量估算的影响进行分析,并利用变换前后的高光谱数据对比研究了不同高光谱模型对土壤Cd含量反演的性能。首先利用等离子体质谱法和FieldSpec4地物光谱仪收集了56组土壤样品的Cd含量和对应的高光谱曲线(350~2 500 nm);为了弱化光谱测定中光亮变化和土壤表面凹凸对实验结果的影响,研究对高光谱数据进行倒数对数预处理;考虑到高光谱数据中存在大量的信息冗余,研究采用了主成分分析(PCA)对高光谱数据进行降维处理并最终保留了前12个主成分量作为特征变量。针对高光谱反演模型,研究选择了偏最小二乘(PLSR)、支持向量机(SVM)、人工神经网络(ANN)和随机森林(RF)四种回归模型建立PCA主成分与Cd含量之间的关系;最后,研究选取了决定系数(R2)、均方根误差(RMSE)和RPD三种精度评估指标评估回归模型的拟合精度,结果表明针对光谱采用PCA波段降维的方法处理后,选取的12个主成分对变化前后的光谱累计贡献率均达到99.99%,作为模型的输入变量,四种模型均具有一定的预测能力。无论光谱变换与否,PCA-RF反演模型的预测能力均为最好(R2分别为0.856和0.855,RPD均高达3.39)。利用PCA对高光谱数据降维处理可以有效降低高光谱数据冗余,有力的保证模型的预测能力。以PCA筛选出的主成分量可以作为模型极好的输入变量,以RF为基础的高光谱反演模型在反演土壤Cd含量时具有最佳效果,可为该区域及类似地区的土壤重金属污染物反演提供新的方法支撑。  相似文献   

6.
矿业废弃地重构土壤重金属含量高光谱反演   总被引:3,自引:0,他引:3  
矿产资源对工业和国民经济的发展有重要的作用,但是随着矿业开采规模的扩大,资源枯竭、经营不善而形成的矿业废弃地越来越多。由于长时间受到采矿的影响,矿业废弃地土壤中存在大量的重金属元素,高浓度重金属可能会对环境和人体产生影响。土地复垦是整治污染、退化土壤再利用的重要方法,对重构后的土壤进行重金属含量检测是衡量土地复垦成效的重要指标,需要长期进行跟踪监测。传统的化学检测方法效率低、成本高、无法实现重金属大范围检测。高光谱是一种新兴的、发展潜力巨大的技术,在环境保护,资源利用,区域可持续发展等方面有着广泛的应用。经过近几十年的快速发展,仪器精度逐渐提高,检测方法逐渐成熟,为实现土壤重金属高效、便捷检测提供了可能。正常土壤重金属含量一般相对较低,采用光谱测量重金属含量较为困难,但铁矿开采区矿业废弃地由于土壤中的铁元素较多,会使土壤中的重金属的存在和聚集形式发生变化,影响重金属对光谱的响应,从而使土壤光谱反射率与重金属含量之间关系更加明显。以湖北省大冶市复垦矿区研究区,采样化学检测方法获取土壤重金属(As,Cr,Zn)含量;借助于美国ASD公司生产的FieldSpec4地物光谱仪(350~2 500 nm)获取土壤反射率,应用一阶微分、倒数对数、连续统去除法分别对反射率曲线进行预处理,提取出光谱特征波段,分析三种重金属元素与光谱特征间的相关性并建立逐步回归模型。研究表明,光谱数据预处理可使光谱特征波段更加明显,其中一阶微分和连续统去除法的效果最为明显。3种重金属元素的特征波段为495,545,675,995,1 425,1 505,1 935,2 165,2 205,2 275和2 355 nm。将土壤重金属含量与光谱特征波段之间做相关性分析,三种重金属都表现出了与光谱曲线的相关性,相关系数大部分都达到了0.5以上,最大相关系数为0.663,由于重金属种类和预处理方式的不同会导致相关性系数存在明显的差异。利用与土壤重金属相关性最大的特征波段建立三种重金属反演模型,并以反演模型r大小选择每种重金属的最优反演模型。由于重金属种类的不同,模型的选择也有差异,Cr和Zn一阶微分逐步回归为最佳反演模型,重金属As连续统去除法逐步回归为最佳反演模型。通过检验,三种重金属中Cr反演效果最好,RMSE为2.67,其次是Zn和As。对比当前不同检测手段可知,基于土样和光谱数据预处理的土壤重金属含量地物光谱仪高光谱反演是比较理想的。可为矿业废弃地土壤重金属高光谱反演提供参考。  相似文献   

7.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

8.
连续小波变换高光谱数据的土壤有机质含量反演模型构建   总被引:9,自引:0,他引:9  
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用“重铬酸钾-外加热法”测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CR-CWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R2,R-CWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CR-CWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。  相似文献   

9.
高光谱小波能量特征估测土壤有机质含量   总被引:3,自引:0,他引:3  
章涛  于雷  易军  聂艳  周勇 《光谱学与光谱分析》2019,39(10):3217-3222
土壤高光谱在采集过程中难以避免噪声干扰,造成高光谱数据信噪比较低,影响土壤有机质含量估测精度。尝试探究小波能量特征方法,降低高光谱噪声,提升土壤有机质含量高光谱估测模型性能。选取湖北省潜江市运粮湖管理区为试验区,于2016年9月采集80份深度为0~20 cm的水稻土样本;土壤样本经风干、碾磨、过筛等一系列处理后,在实验室内采集样本光谱,并通过重铬酸钾-外加热法测定土壤有机质含量;利用浓度梯度法,将总体样本集(80个样本)划分为建模集(54个样本)和验证集(26个样本);以mexh为小波基函数进行连续小波变换(continuous wavelet transformation),将土壤高光谱转换为10个分解尺度的小波系数(wavelet coefficients);逐尺度计算小波系数的均方根作为小波能量特征(energy features),将10个尺度的小波能量特征组成小波能量特征向量(energy features vector);逐尺度逐波长计算小波系数与有机质含量的相关系数,将达到极显著水平(p<0.01)的小波系数作为敏感小波系数(sensitive wavelet coefficients);利用主成分分析法(principal component analysis)分别计算土壤高光谱和小波能量特征向量的各主成分载荷,通过比较两者第一主成分贡献率的高低和两者前三个主成分得分的空间离散程度,判断小波能量特征转换前后建模自变量的主成分信息变化趋势;基于小波能量特征向量和敏感小波系数分别建立多元线性回归和偏最小二乘回归土壤有机质含量估测模型。结果表明,土壤有机质含量越高,全波段反射率越低,但不同土样的光谱反射率曲线特征相似,近红外部分的反射率(780~2 400 nm)高于可见光部分(400~780 nm);敏感小波系数对应的波长为494,508,672,752,1 838和2 302 nm;土壤高光谱与小波能量特征向量的第一主成分贡献率分别为96.28%和99.13%,小波能量特征向量的前三个主成分散点较土壤高光谱的主成分散点在空间上更为聚集,表明小波能量特征方法有效减少了噪声影响;比较全部土壤有机质含量估测模型,以小波能量特征向量为自变量的多元线性回归模型具有最佳估测精度,其验证集决定系数(R2)、相对估测误差(RPD)和均方根误差(RMSE)分别为0.77,1.82和0.82。因此,小波能量特征方法既能够提高数据的信噪比,提升土壤有机质含量的估测精度,又实现了土壤高光谱数据降维,降低了模型复杂度,可用于土壤有机质含量快速测定和土壤肥力动态监测等研究。  相似文献   

10.
连续小波变换定量反演土壤有机质含量   总被引:3,自引:0,他引:3  
以北京市东部地区96个潮土土样的土壤参数及对应光谱数据为数据源,采用连续小波多尺度分析处理与分析。首先将土壤光谱进行初步处理,生成小波系数,其次将土样的有机质含量与小波分解系数开展相关性分析,提取特征波段,最后采用特征波段建立预测耕层有机质含量的模型。结果表明:经连续小波处理后,光谱对耕层有机质含量的预测能力明显优于传统光谱变换技术;经连续小波分解后,对土壤有机质含量的预测能力随光谱分辨率降低呈先降后升再降的趋势;连续小波分析算法可提升土壤光谱对有机质含量的估测能力,与土壤高光谱反射率相比,基于连续小波变换的土壤有机含量最佳的精度提高19%;由于光谱分辨率为80 nm建立的模型精度较高,其R2达到0.632,这表明在连续小波算法下,光谱分辨率较低的宽波段数据可用于土壤有机质含量的监测。  相似文献   

11.
光谱测定黑河上游土壤有机质的预测模型   总被引:1,自引:0,他引:1  
地面高光谱遥感光谱分辨率高,能详细地反映地物波谱特征;多光谱遥感时域宽,覆盖范围广,对较大时空区域的地物特征反演具有更大的优势。探求以不同反射率指标的土壤有机质含量预测模型,及其敏感波段,可以结合两种光谱数据的优点,为研究土壤有机质含量的时空变化规律提供新途径。本研究选取黑河上游223个土壤样品测定其有机质含量和高光谱曲线,应用原始光谱曲线反射率(λ)、倒数(REC)、倒数之对数(LR)、归一化(CR)和一阶微分(FRD)五种指标,采用逐步线性回归分析方法建立预测模型。通过统计检验,结果表明,以反射率指标为自变量的模型预测效果最佳,其相关系数(r)和均方根误差(RMSE)分别为:0.863和4.79。最优模型中得出的敏感波段有TM1内的474 nm、TM3内的636 nm和TM5内的1 632 nm。研究结果可为使用TM遥感数据反演黑河上游土壤有机质含量提供参考。  相似文献   

12.
已有的土壤有机质含量估测模型大多以光谱特征波段、线性和非线性模型为基础,较少考虑通过拓展样本数据建模集来提高模型的估测能力。为进一步提高土壤有机质高光谱反演模型估测精度,提出利用生成式对抗网络(GAN)合成伪高光谱数据和有机质含量的动态估测模型。选取湖南省长沙市及周边区域的水稻田为研究对象,采集土样和实测高光谱数据(350~2 500 nm),室内化学测定有机质含量。以高光谱数据和有机质含量为基础,利用生成式对抗网络生成等量新数据, 结合原始数据建模集组成增强建模集。在GAN正式训练中,每轮训练完成后,设置4个观测点(对应增强建模集中含50,100,150和239个生成样本),动态构建交叉验证岭回归(RCV)、偏最小二乘回归(PLSR)和BP神经网络(BPNN)土壤有机质含量估测模型(分别简称GAN-RCV,GAN-PLSR和GAN-BPNN),并在相同测试集上实施模型评估。实验结果表明:(1)原始数据建模集上拟合的估测模型中,交叉验证岭回归表现最佳,决定系数(R2)和均方根误差(RMSE)分别为0.831 1和0.189 6;(2)GAN的150轮正式训练中,增强建模集上动态构建的GAN-RCV,GAN-PLSR和GAN-BPNN模型性能显著提高,具体表现为:GAN-RCV的R2取得最大值0.890 9(RMSE 0.153 7)、最小值0.850 5 (RMSE 0.18)与平均值0.868 7(RMSE 0.168 6),最大R2比建模集上拟合的RCV提高了7.2%(RMSE降低了18.9%),GAN-PLSR获得R2最大值0.855 4(RMSE 0.176 9)、最小值0.727 0 (RMSE 0.243 2)与平均值0.780 1 (RMSE 0.217 7),最大R2比建模集上拟合的PLSR提高了20.6%(RMSE降低了29.5%),GAN-BPNN表现最佳,R2取得最大值0.905 2(RMSE 0.143 3)、最小值0.801 7(RMSE 0.207 3)与平均值0.868 1(RMSE 0.168 6),最大R2比建模集上拟合的BPNN提高了30.8%(RMSE降低了44.5%);(3)随着增强建模集中生成样本数量增加,模型精度提升效果呈先升后降趋势,4个观测点中第3个观测点的模型性能提升最显著。充分的实验表明:基于GAN动态构建的有机质含量估测模型显著改善了模型预测性能。依据测试集上的评估结果,可择优使用最佳模型进行后续土壤有机质含量估测。  相似文献   

13.
基于北京市52个潮土样本的高光谱数据和Landsat TM、环境减灾卫星(HJ)影像的波段响应函数,生成宽波段多光谱模拟数据,对比分析了室内实测光谱数据、宽波段模拟数据与土壤有机质含量的相关性,筛选敏感波段,利用偏最小二乘法构建北方潮土有机质含量预测模型。研究表明:在宽波段模拟数据建立的模型中,由Landsat TM模拟数据的差值土壤指数(DSI)、比值土壤指数(RSI)、归一化土壤指数(NDSI)及其第3波段共同构建的模型最优,其决定系数与均方根误差分别为0.586和0.280;与实测光谱数据相比,模拟数据的最佳预测模型,均优于除一阶微分、弓曲差以外的其他10种高光谱模型。因此,利用多光谱数据预测潮土有机质含量是可行的。  相似文献   

14.
二进制小波技术定量反演北方潮土土壤有机质含量   总被引:1,自引:0,他引:1  
为从土壤光谱中提取土壤有机质的光谱响应信息,提升土壤有机质含量诊断精度与可靠性,以潮土有机质含量为研究对象,以北京市区域的96个耕层土壤参数与高光谱数据为数据源开展研究分析;先采用二进制小波技术将土壤光谱数据分离为5个尺度的高频数据与低频数据,再将低频数据、高频数据分别与土壤有机质实测数据进行相关性分析,提取最佳波段组合,构建有机质含量诊断模型。结果表明:(1)二进制小波技术可抑制噪声对高频信息的干扰,能有效提升光谱对土壤有机质含量的敏感性,进而提升有机质含量的诊断精度与可靠性;(2)在二进制小波技术下,高频信息对有机质含量的诊断能力明显优于低频信息,低频信息对土壤有机质含量的诊断能力随尺度增加而降低,高频信息随尺度增加呈先提升而后降低的趋势;(3)与数学方法相比,基于二进制小波变换算法构建的模型精度较高,稳定性较好,其最优模型的预测精度提高了31.5%,可靠性增加了10.5%。  相似文献   

15.
土壤有机质含量的高光谱估测可快速、准确监测土壤肥力,对现代化农业生产进行精准施肥提供科学依据。以新疆渭干河-库车河三角洲绿洲耕层土壤为研究对象,对采集的98个土壤样品的原始光谱反射率R分别进行传统倒数对数lg(1/R)、一阶微分R′和倒数对数一阶微分[lg(1/R)]′数学变换,以及基于小波母函数Bior1.3不同尺度分解的连续小波变换(CWT),并与实测土壤有机质含量进行相关分析,从而筛选出各类变换下与土壤有机质含量密切相关的特征波段和小波系数(p<0.01)。分别以原始光谱反射率(R)以及不同变换处理下的特征波段反射率和敏感小波系数作为自变量,土壤有机质含量作为因变量,采用偏最小二乘回归和支持向量机回归方法构建土壤有机质含量的估测模型。结果表明:(1)各类光谱变换方法有效提升光谱与土壤有机质含量之间的敏感性,其中经CWT变换后的土壤光谱反射率与有机质含量的相关性得到显著提高,相关系数由0.39提高到0.54(p<0.01)。(2)传统的[lg(1/R)]′变换构建的支持向量机回归模型,其决定系数(R2)高于lg(1/R)R′变换构建的模型,说明倒数对数一阶微分变换可有助于提高估测模型的精度,且支持向量机回归模型的精度和稳定性高于偏最小二乘回归模型。(3)经过CWT分解后,以原始光谱反射率在不同尺度上的敏感小波系数作为自变量建立的模型,估测精度和稳定性均有明显的提高,构建的R-CWT-23-SVMR模型的决定系数(R2)为0.84,均方根误差(RMSE)为1.48,相对分析误差(RPD)等于2.11,模型精度达到最高并拥有极好的预测能力。高光谱数据经多种变换处理后可有效去除白噪声,而连续小波变换处理比传统的数学变换方法更适合于挖掘土壤有效信息,实现光谱信号的近似特征和细节特征的有效分离,建立的反演模型可更加精准估测土壤有机质含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号