首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two bowlic cyclotriveratrylene CTV-1 and CTV-2, with different peripheral groups of —OCH3 and —OCH2CH3 for CTV-1 and —OCH3 and —OCH2COOCH3 for CTV-2, respectively, were synthesized by typical trimerization via a multistep sequence from vanillin. Both bowlic CTV molecules were thermotropic liquid crystals, and presented typical grainy textures of the nematic phase and homogeneous texture of the single domain nematic phase. It is of interest to observe the regular and beautiful mosaic-like morphologies after cooling from liquid crystalline phases, which appeared and vanished repeatedly in several circles of cooling and heating. The size of each mosaic was several dozens of micron. In nature, the mosaic-like morphologies are the optical pattern of cracks formed by the shrinking, due to the crystallization of frozen texture of nematic phases. By means of scanning electron microscopy, the mosaic-like morphologies were observed to consist of lamellae, and each mosaic is a rectangular multi-layer lamella, which is composed of packed single-layered lamellae. The fibrils in the diameter of about 1 μm were observed, which are the structural units of lamellae and would be the bundles of the bowlic molecular columns. The mosaic-like morphologies decorate the bowlic molecular columnar nematic phase, therefore, a novel mosaic-like morphologies decoration method was applied to reveal the director distribution of several kinds of point disclinations, such as s = +1(δ=0° and δ =90 °) and s = ±1/2, and Nèel domain walls. It was shown that the bowlic molecular columnar nematic phase behaved as normal nematic phases; however, the basic structural units ordered were the bowlic molecular column or the bundles of bowlic molecular column (i.e. fibrils), but not the bowlic molecules themselves. The bowlic molecular columns acted as the rod-like molecules in a normal nematic phase. Therefore, a new term BCN (bowlic columnar nematic phase) is used to describe the anomalous nematic phase in this paper. Supported by the National Natural Science Foundation of China (Grant No. 20774077), the Natural Science Foundation of Fujian, China (Grant Nos. E0510003 & E0710025) and the Project of Science and Technology of Xiamen, China (Grant No. 3502Z20055013)  相似文献   

2.
Abstract

The phase diagram of the sodium dodecylsulphate/decanol/water system is studied by2H NMR spectroscopy in the range between the calamitic nematic (N+ C) and discotic nematic (N? D) phases. In this narrow range a nematic biaxial phase (NBX) is observed. The phase transitions between the nematic phases are all of first order. The shape of the surfactant aggregates in the nematic phases varies with composition and temperature.  相似文献   

3.
The phase diagram of the sodium dodecylsulphate/decanol/water system is studied by2H NMR spectroscopy in the range between the calamitic nematic (N+C) and discotic nematic (N-D) phases. In this narrow range a nematic biaxial phase (NBX) is observed. The phase transitions between the nematic phases are all of first order. The shape of the surfactant aggregates in the nematic phases varies with composition and temperature.  相似文献   

4.
The phase diagram of the nematic mesophase present in the tetradecyltrimethylammonium bromide/sodium bromide/water ternary system was determined. A calamitic nematic mesophase (NC) was observed which extends to very high concentrations of electrolyte. The order parameters of the surfactant head group in the mesophases were studied by the NMR quadrupolar splitting of the deuterated surfactant. On increasing the temperature of nematic mesophases with low electrolyte concentrations, a phase separation occurs with the formation of a more highly ordered hexagonal phase and an isotropic phase. Diffusion measurements of the isotropic micellar solution by the NMR PFG method were used to estimate hydrodynamic radii at low surfactant concentrations and to study micelle diffusion as the concentration of the surfactant was increased to the liquid crystalline region. At higher surfactant concentrations, the diffusion coefficient reached a limiting value. The calamitic nematic mesophase in this surfactant/electrolyte/water system appears to be formed by long wormlike micelles.  相似文献   

5.
Experimental results for the temperature dependence of density at normal pressure for two compositions of sodium lauryl sulphate/decanol/water solutions, exhibiting either a calamitic or a discotic lyotropic nematic phase at room temperature, are presented. Within the limits of experimental precision (±1 ×10-5 g cm-3), the systems show no jump in density at the nematic to isotropic phase transition. Over the studied temperature range, the mean thermal expansion coefficients were also evaluated.  相似文献   

6.
Chromonic liquid crystals are formed by the addition of aromatic molecules such as disodium chromoglycate (cromolyn) to water. In this study, we investigate the addition of salts to the lyotropic nematic phase of cromolyn aqueous solutions. The addition of sodium and potassium salts shifts the isotropic-nematic phase boundary upward by more than 10 degrees C, so that samples that were isotropic at room temperature are transformed into nematic phases. Salt effects are predominantly dictated by the cation, not the anion, and appear to differ based on cation size. In contrast to small, hydrated cations like sodium, large, weakly hydrated cations such as tetraethylammonium and tetrabutylammonium shift the phase boundary downward, thus stabilizing the isotropic phase at the expense of the nematic one. The phase behavior results are highly correlated with viscosity measurements, with an upward shift in the phase boundary correlating with an increase in solution viscosity and vice versa. We also probe the microstructure in cromolyn-salt solutions, both indirectly by small-angle neutron scattering (SANS) and directly by cryo-transmission electron microscopy (cryo-TEM). The cryo-TEM images show the presence of rodlike aggregates that possibly undergo a higher order aggregation into bundles in the presence of salt.  相似文献   

7.
Aqueous dispersions of Laponite, a synthetic clay neutralized by sodium counterions, are used as a model of charged anisotropic colloids to probe the influence of the shape of the particle on their organization within a macroscopic nematic phase. Because of the large fraction of condensed sodium counterions in the vicinity of the clay particle, (23)Na NMR is a sensitive probe of the nematic ordering of the clay dispersions. We used line shape analysis of the (23)Na NMR spectra and measurements of the Hahn echo attenuation to quantify the degree of alignment of the individual clay particles along a single nematic director. As justified by simple dynamical simulations of the interplay between the sodium quadrupolar relaxation and its diffusion through the porous network limited by the surface of the clay particles, we probe the degree of ordering within these clay nematic dispersions by measuring the variation of the apparent (23)Na NMR relaxation rates as a function of the macroscopic orientation of the clay dispersion within the magnetic field.  相似文献   

8.
Lyotropic quaternary mixtures of potassium alkanoates (KCx) and sodium alkyl sulphates (NaCxS), where x is the number of carbon atoms in their alkyl chains, were prepared to investigate the effect of the surfactant alkyl chain length on the stabilisation of lyotropic nematic phases. The lyotropic mixtures investigated were formed by the dissolution of KCx (NaCxS) surfactants in the mixture of Rb2SO4/1-decanol/water (Na2SO4/1-decanol/water), separately. The uniaxial-to-biaxial nematic phase transitions were identified from the temperature dependence of the birefringences of the nematic phases by means of laser conoscopy. The micelle dimensions were obtained from small-angle X-ray scattering measurements. It was observed that the increase in the surfactant alkyl chain length causes the micellar growth in the plane perpendicular to the main amphiphile bilayer. The surfactant alkyl chain length plays a key role on the shape anisotropy of micelles, which triggers the orientational fluctuations that are responsible for the stabilisation of the different lyotropic nematic phases.  相似文献   

9.
The nematic liquid-crystalline phase exhibits average orientational order, with no positional organisation. So-called modulated nematic phases exhibit this same orientational order with an additional spatially periodic modulation of the nematic director, the most common of which is the twist-bend nematic phase. We report a pentaerythritol derived tetrapode which exhibits a nematic-like mesophase at ambient temperature, and we denote this new mesophase ‘NX’ to indicate a nematic phase of unknown structure. X-ray scattering experiments refute the possibility of positional order, yet optical textures are consistent with a periodic structure. We suggest that the mesophase exhibited by this material is a new type of nematic-like mesophase with some form of modulated structure. We find the NX phase to exhibit an electrooptic response consistent with a nematic-like phase.  相似文献   

10.
《Liquid crystals》2012,39(12):1756-1762
ABSTRACT

We prepared a homologous series of H-shaped liquid crystals I-n and investigated their phase transition properties using optical microscopy and differential scanning calorimetry. All the compounds exhibited a nematic phase at room temperature. The phase transition behaviour is explained in terms of molecular shape anisotropy. Furthermore, those compounds were found to exhibit electro-optical switching in the isotropic liquid in the vicinity of the nematic–isotropic liquid transition, indicating that the microscopic nematic order with a certain coherence length of the molecules exists in the optically isotropic temperature range.  相似文献   

11.
Abstract

Backbone anisotropy and the structure of the mesophases of a series of side-chain liquid crystal polymers have been studied in the bulk by neutron scattering. The backbone conformation is obtained by small-angle neutron scattering on mixtures of hydrogenous polymers with deuteriated backbones. The components of the radius of gyration parallel, R and perpendicular, R ∥ to the magnetic field are determined as a function of temperature for both the nematic phase and the smectic phase. It is shown that the polymer backbone is deformed in both phases. When the polymer exhibits only a nematic phase, it adopts a prolate conformation, where the average backbone direction is more or less parallel to the aligned mesogenic groups. Upon transition from the smectic phase to a nematic phase, the backbone in the nematic phase assumes a slightly oblate shape. This tendency towards oblate shape is due to the smectic fluctuations which are always present in such nematic phases. The exentricity of the oblate backbone conformation in the smectic phase is always larger than in the nematic phase. This is attributed to a periodic distribution of the backbone between the mesophase layers. Then, the backbone anisotropy depends not only on the smectic structure (SA1, SAd), but also on the temperature dependence of the density of aligned mesogenic groups in the layers. On the other hand, it is shown that the isotopic mixtures are no longer ideal when polymers deuteriated in the mesogenic moieties are mixed with the corresponding hydrogenous polymers.  相似文献   

12.
New homologous series of 4-isopropyl- and 4-isopropoxy- N -(4- n -alkoxysalicylidene)anilines were synthesized. The phase transitions of these homologues were determined by differential scanning calorimetry and polarizing optical microscopy. No enantiotropic liquid crystalline phases were observed for homologues having a terminal isopropyl group; as the terminal alkoxyl chain is lengthened, smectic C and nematic phases occur monotropically. The members with an isopropoxy substituent exhibit an enantiotropic nematic phase as the terminal alkoxyl chain is lengthened; the octyloxy member exhibits a monotropic smectic C phase as well as an enantiotropic nematic state.  相似文献   

13.
ABSTRACT

Recently, there has been a surge of interest in mesogens exhibiting the twist-bend nematic (NTB) phase that is shown to be chiral even though formed by effectively achiral molecules. Although it now seems to be clear that the NTB phase in the bulk is formed by degenerate domains having opposite handedness, the presence of a supramolecular heliconical structure proposed in the Dozov model has been contradicted by the Hoffmann et al. model in which the heliconical arrangement is replaced by a polar nematic phase. The evidence in support of this is that the quadrupolar splitting tensor measured in various experiments is uniaxial and not biaxial as expected for the twist-bend nematic structure. In this debate, among other evidence, the molecular translational diffusion, and its magnitude with respect to that in the nematic phase above the NTB phase, has also been invoked to eliminate or to confirm one model or the other. We attempt to resolve this issue by reporting the first measurements of the translational self-diffusion coefficients in the nematic and twist-bend nematic phases formed 1″,7″-bis-4-(4′-cyanobiphenyl-4′-yl) heptane (CB7CB). Such measurements certainly appear to resolve the differences between the two models in favour of that for the classic twist-bend nematic phase.  相似文献   

14.
The molecular structure and conformational properties of the p-butoxybenzylidene-p′-propionyloxyphenylaniline molecule in the crystalline state and at temperatures of the crystal → nematic and nematic → isotropic liquid phase transitions were examined by AM1 calculations. It was found that the nematic → isotropic liquid phase transition is accompanied by a change in the molecular conformation.  相似文献   

15.
ABSTRACT

The recently discovered twist-bend nematic phase, Ntb, is a non-uniform equilibrium nematic phase that presents a spontaneous bend with a precession of the nematic director, n, on a conical helix with a tilt angle θ and helical pitch P. The stability of the Ntb phase has been recently demonstrated from the elastic point of view by extending the Frank elastic energy density of the nematic phase to include the symmetry element of the helical axis, t. In the present article, we investigate the influence of an external bulk field (magnetic or electric) on the Ntb phase. Using symmetry arguments we derive the expression for the flexoelectric polarisation in twist-bend nematic phases. We show that, besides the standard contribution related to the spatial variation of the nematic director, two new contributions connected with the existence of the helical axis appear. In the ground state, where the nematic deformation is a pure heliconical deformation, the new contribution vanishes identically, and the total flexoelectric polarisation is perpendicular to the nematic director. Furthermore, as an example, we study the role of an external magnetic field applied parallel to the helical axis for a material with positive magnetic susceptibility anisotropy. We show that the field modifies the range of values of the coupling parameter between the director and the helical axis, thus shifting the interval of values for which this coupling results in the Ntb phase.  相似文献   

16.
Nine rigid rod ester monomers endcapped with maleimide, nadimide, and methylnadimide groups were prepared and studied by DSC and hot stage polarized light microscopy. All of the monomers showed thermotropic nematic liquid crystalline phases and could be thermally crosslinked in the nematic phase. The nematic texture was maintained in the crosslinked solid state. The nematic phase range was enlarged by B-staging the monomeric compounds. Heating the monomers for a short period of time in the nematic phase lowered the crystal to nematic transition temperatures and increased the nematic to isotropic transition temperatures. A nonequilibrium phase diagram was proposed to explain the melting behavior of these reactive liquid crystal thermoset materials.  相似文献   

17.
The temperature variation of the splay and bend elastic constants of a binary system exhibiting nematic-induced smectic Ad and re-entrant nematic phases measured by electric field-induced Freedericksz transition method has been reported. As bend deformation is not permitted in the smectic A phase, bend elastic constant (K33) could only be determined in the nematic and re-entrant nematic phases. In both the nematic phases, the splay elastic constant has the same order of magnitude and does not show any pretransitional effect. However, in the induced smectic Ad phase, the value of K11 is about one to two orders higher than that in the nematic phases. The bend elastic constant shows a strong pretransitional effect near the nematic–smectic and smectic–re-entrant nematic phase transitions. The influence of the presence of the induced smectic phase is observed even in those mixtures which have no induced smectic phases. As the smectic phase is approached, the ratio K33/K11 increases rapidly and diverges to infinity.  相似文献   

18.
Polarization microscopy was used to study the behavior around the isotropic-nematic interface of colloidal goethite dispersions in a magnetic field. It has been found before that the nematic phase is favored in an external field. In the case of goethite this was also observed; nematic droplets formed inside the isotropic phase and coalesced with the nematic phase. However, the behavior was found to be much richer because of the particle rotation around a certain critical field strength. The simultaneous occurrence of (parallel)nematic-(perpendicular)nematic phase separation under the influence of a magnetic field also plays a role here.  相似文献   

19.
By using polarizing microscopy analysis we have found that several achiral homologues of the 4-n-alkyloxybenzoic acids, displaying only the nematic phase, exhibit the optical properties of a chiral liquid crystal system. These acids possess a mesophase due to the formation of dimers via hydrogen bonding. The microtextural analysis was carried out in the temperature ranges of the isotropic, nematic and crystal phases. The nucleation of a chiral texture in small domains emerging on cooling in the isotropic phase was observed. These small domains are characterized by a conoscopic cross which presents an azimuth of 45° with respect to the polarizer axis, contrary to the usual nematic drops, for which the conoscopic cross is not rotated. On further cooling, these domains coalesce in the nematic phase close to the clearing point, thus building large chiral monodomains. Such coalesced droplets exhibit very thin stripe lines, as in the case of pure cholesterics with a tilted helix axis. Moreover, left- and right-handed chiral domains were observed, combined in regions partially separated by 'oily streaks', also typical of pure cholesterics. On cooling, the chiral nematic (N*) phase transformed through a pronounced texture transition into a normal nematic phase. However, the small chiral grains that formed from the isotropic phase are retained close to the surface, acting as 'memorizing centres'. With suitable boundary conditions, they can provide a macroscopic twist driven by the surface. Moreover, a twisted smectic B not present in the bulk phase diagram was found and interpreted as induced by the surface. Also in the crystal phase a strong memorization of the chiral N* texture was observed.  相似文献   

20.
The dynamics of two nematic liquid crystals, 4-(trans-4(')-n-octylcyclohexyl)isothiocyanatobenzene and 4-(4-pentyl-cyclohexyl)-benzonitrile, are investigated as a function of temperature both in the homeotropically aligned nematic phase and in the isotropic phase using optical heterodyne-detected optical Kerr effect experiments, which measures the time derivative of the polarizability-polarizability-correlation function (orientational relaxation). Data are presented over a time range of 500 fs-70 micros for the nematic phase and 500 fs to a few hundred nanoseconds for the isotropic phase. The nematic dynamics are compared with a previously studied liquid crystal in the nematic phase. All three liquid crystals have very similar dynamics in the nematic phase that are very different from the isotropic phase. On the slowest time scale (20 ns-70 micros), a temperature-independent power law, the final power law, t(-f) with f approximately 0.5, is observed. On short time scales (approximately 3 ps to approximately 1 ns), a temperature-dependent intermediate power law is observed with an exponent that displays a linear dependence on the nematic order parameter. Between the intermediate power law and the final power law, there is a crossover region that has an inflection point. For times that are short compared to the intermediate power law (approximately <2 ps), the data decay much faster, and can be described as a third power law, although this functional form is not definitive. The isotopic phase data have the same features as found in previous studies of nematogens in the isotropic phase, i.e., the temperature-independent intermediate power law and von Schweidler power law at short to intermediate times, and a highly temperature-dependent long time exponential decay that is well described by the Landau-de Gennes theory. The results show that liquid-crystal dynamics in the nematic phase exhibit universal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号