首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of opal + NaCl nanocomposites with 100 and 80% filling of first-order opal voids by sodium chloride have been prepared. Their effective thermal conductivities, κeff, were measured in the temperature interval 5–300 K. The lattice thermal conductivity of NaCl loaded in the opal voids, κ ph op , was calculated from the measured κeff(T). The value of ph was found to be considerably smaller than the lattice thermal conductivity of bulk NaCl throughout the temperature interval studied. For T>20 K, this behavior of κ ph op (T) is accounted for by the presence of specific defects that form in NaCl loaded in opal voids. For T<20 K, κ ph op (T) is governed by boundary phonon scattering from bottlenecks in horn-shaped channels interconnecting the octahedral and tetrahedral first-order opal voids filled by sodium chloride. It was found that the value of κ ph op (T) in this temperature region depends substantially on the dimensions of the bottlenecks, whose thicknesses are related to the amount of the cristobalite forming in a near-surface layer of the amorphous SiO2 opal spheres in the course of preparation of the opal + NaCl nanocomposite.  相似文献   

2.
The imaginary parts of microwave conductivity σ″(T<Tc) and resistivity ρ (T)=1/σ(T>Tc) along (σ ab and ρab) and across and (σ c and ρc the cuprate ab planes of a YBa2Cu3O7?x crystal with the oxygen doping level x varying from 0.07 to 0.47 were measured in the temperature range 5≤ T≤200 K. In the superconducting state, the σ ab (T)/σ ab (0) and σ c (T c (0) curves coincide for an optimally doped (x=0.07) crystal, but, with an increase in x, the slopes of the σ c (T)/σ c (0) curves decrease noticeably at T<Tc/3, on the background of small changes happening to the σ ab (T ab (0) curves. The two-dimensional (2D) transport along the ab planes in the normal state of YBa2Cu3O7?x is always metallic, but there is a crossover (at x=0.07) from the Drude to hopping (at x>0.07) conductivity along the c axis. This is confirmed both by the estimates of the lowest metallic and the highest tunneling conductivities along the c axis and by quantitative comparison of the measured ρc(T) curves with the curves calculated in the polaron model of quasiparticle transport along the c axis.  相似文献   

3.
The effects caused by vapor inhomogeneity over liquid helium are considered. Both pure isotopes have surface levels, whose population increases with temperature T. We separated their contribution to the temperature dependence of surface tension σ3(T) and σ4(T) and compared our theoretical results with the results of Japanese experimental works [1–3]. For liquid He3, one has σ3(T)=σ3(0)?σ 3 T2 at 0.2 K<T<1 K and σ3(T)=σ3(0)?α 3 0 T2exp(?Δ3/T) at T<0.2 K, with Δ3≈0.25 K. For liquid He4, σ4(T)=σ4(0)?AT7/3? α 4 0 T2exp(?Δ4/T) at T<2 K, where A is the Atkins constant and Δ4≈4 K. The parameters α 3 0 , α 3 , and α 4 0 depend on the fluid properties.  相似文献   

4.
(NH4)3ZrF7 single crystals were grown, and polarization-optical and x-ray diffraction studies were performed on powders and crystalline plates of various cuts over a wide temperature range. Phase transitions are revealed at temperatures T 1↑ = 280 K, T 2↑ = 279.6 K, T 3↑ = 260–265 K, and T 4↑ = 238 K on heating and at T 1↓ = 280 K, T 2↓ = 269–270 K, T 3↓ = 246 K, and T 4↓ = 235 K on cooling. The sequence of changes in symmetry is established to be as follows: O h 5 (Z = 4) ? D 2h 25 (Z = 2) ? C 2h 3 (Z = 2) ? C i 1 (Z = 108) ? monoclinic2(Z = 216).  相似文献   

5.
The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS) obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cooling in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the “freezing” temperature of the relaxation state (T f ≈ 182 K), field removal, and subsequent cooling in zero field (ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below T f , application of the same field, and FC to T = 10 K. The behavior of the P r FC (T) and P r ZFC (T) dependences is analyzed. In the field E < 2 kV/cm, the P r ZFC curves as functions of 1/T have a broad low-intensity peak in the region TT f , which vanishes in stronger fields, when the P r FC (1/T) curves intersect at TT f and have no anomalies. The difference in the behavior of P r ZFC (T) and P r FC (T) indicates the difference in the nature of NERS formed during ZFC and FC of the system upon a transition through T f . In the ZFC mode, NERS exhibits glasslike behavior; in the FC regime, features of the ferroelectric behavior even in the weak field. Analogous variations of P r ZFC (T) and P r FC (T) in a classical ferroelectric KDP are also given for comparison.  相似文献   

6.
The emission spectra caused by the transitions from the ion-pair states and f0 g + and G1g of the I2 molecule are obtained by excitation of individual rovibronic levels of the molecule by the method of optical-optical double resonance. The emission spectra from the state F0 u + populated due to collisions I2(f) + I2(X) are also measured. By modeling the experimental emission spectra, the dipole moment functions for the electronic transitions f g + -B0 u + , A0 u + , and B″0 u + ; G1g-A0 u + and B″0 u + ; and F0 u + -X0 g + and a′0 g + of the iodine molecule are reconstructed.  相似文献   

7.
Simple expressions have been derived for three photon distribution functions w N M (T), w N Z (T), and w N O (T) corresponding to three different methods for counting fluorescence photons from a single nanoparticle excited by continuous laser radiation. In contrast to the previously derived expressions represented in the form of N multiple integrals, the new expressions contain only single or double integrals of Poisson functions, which makes it possible to easily perform the numerical calculation of the photon distribution. The simplest photon counting method corresponds to the lengthiest function w N M (T); on the contrary, the simplest function w N O (T) corresponds to the most complex photon counting method. The functions w N M (T), w N Z (T), and w N O (T) are noticeably different in short time intervals T; however, the distributions calculated using these functions are almost indistinguishable from each other in long T intervals. This circumstance makes it possible to use the simplest function w N O (T) to consider the photon statistics measured by the simplest method. This possibility is particularly important for investigating the fluorescence photon statistics, where the intensity fluctuates.  相似文献   

8.
The magnetoresistance of ceramic YBa2Cu3O~6.5 HTSC samples is studied as a function of the mutual orientation of the current I and external magnetic field H ext at T = 77.3 K in magnetic fields of up to ~500 Oe. It is found that, if the demagnetization factor D is taken into account, the effective critical field of complete penetration of Josephson vortices into weak links H c2J eff does not depend on the mutual orientation of I and H ext. The lower critical field H c1A eff associated with the beginning of penetration of Abrikosov vortices into superconducting grains increases substantially with the angle between I and H ext. The strongest variation with the mutual orientation of I and H ext is exhibited by the critical field of the Bragg glass-vortex glass first-order phase transition H BG-VG eff and by the magnetoresistance jump at this phase transition.  相似文献   

9.
High-frequency broad-band (65–240 GHz) EPR is used to study impurity centers of bivalent chromium in a CdGa2S4 crystal. It is found that the EPR spectra correspond to tetragonal symmetry. The spin Hamiltonian H = βB · g · S + B 2 0 O 2 0 + B 4 0 O 4 0 + B 4 4 O 4 4 with the parameters B 2 0 =23659±2 MHz, B 4 0 =1.9±1 MHz, |B 4 4 |=54.2±2 MHz, g=1.93±0.02, and g=1.99±0.02 is used to describe the observed spectra. It is concluded that chromium ions occupy one of the tetrahedrally coordinated cation positions.  相似文献   

10.
The conductivity and the distribution of electric field, current, and charge density in a periodic two-component system composed of rhombs with an arbitrary vertex angle of 2α are investigated. The effective conductivity of such a medium is represented by a tensor with components σ eff 11 (α) and σ eff 22 (α) in the principal axes that satisfy the Dykhne relation σ eff 11 (α) σ eff 22 (α)=σ 1σ2, where σ1, σ2 are the isotropic conductivities of media 1 and 2. In addition, the relation σ eff 22 (α)=σ eff 11 (π/2?α) is satisfied. The principal axes are directed along the diagonals of the rhombs. It is shown that there are three lines in the rectangle 0<α ≤π/2,?1<Z<1((Z12)/(σ 12)) on which the charge density is expressed in terms elliptic functions. An explicit expression is obtained for all physical quantities on these lines.  相似文献   

11.
Double beta decay (β + EC, EC/EC) of 58Ni is investigated at France’s Modane Underground Laboratory (4800 m water equivalent) using the OBELIX ultralow-background HPGe detector with a sensitive volume of 600 cm3 and a natural nickel sample of ~68% 58Ni with a mass of ~21.7 kg. After preliminary analysis of the experimental data accumulated over ~144 days, new experimental limits are obtained for the 2νβ+EC decay of 58Ni to the 0+ ground state and the 2 1 + , 811 keV excited state of 58Fe, and for the 2νEC/EC decay of 58Ni to the 2 1 + , 811 keV and 2 2 + , 1675 keV excited states of 58Fe. The limits are T1/2+EC,0→0+) > 1.7 × 1022 yr, T1/2+EC,0→2 1 + ) > 2.3 × 1022 yr, T1/2(EC/EC,0→2 1 + ) > 3.3 × 1022 yr, and T1/2(EC/EC,0→2 2 + ) > 3.4 × 1022 yr. Experimental limit T1/2(0νEC/EC–res, 1918 keV > 4.1 × 1022 yr is obtained for resonant neutrinoless radiative EC/EC decay with an energy of 1918.3 keV. All limits are at 90% CL.  相似文献   

12.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

13.
The transition dipole moments P 0n s for the transitions from the electronic triplet state 3 B 2(ππ*) to vibrational sublevels of the vibrational out-of-plane modes n of the carbazole and dibenzofuran molecules are calculated. The values of the radiative deactivation rate constant k rad s of the triplet sublevels T s are determined along with the components k SO s and k VSO s of this constant, which depend on the intramolecular spin-orbit (SO) and vibronic-spin-orbit (VSO) interaction. It is ascertained that k rad z > k rad y . For different structural units of the molecules (the heteroatom and the carbon atoms of the dibenzene fragment), the effect of the SO coupling on the constant k VSO~Σs, n (P 0n s )2 is studied. A competition between the effects on k VSO from the SO coupling in the carbon atoms and in the light N and O heteroatoms is revealed. This competition accounts for the weak influence of the heteroatom on this component of the rate constant k rad in these molecules. It is ascertained that the intensity distribution among the vibronic lines in the phosphorescence spectra of carbazole and dibenzofuran I 0n ~Σs (P 0n s )2 is different due to the substantially different influence of the N and O heteroatoms on the deactivation of the triplet sublevel T y .  相似文献   

14.
For La 0.825 3+ Sr 0.175 2 +Mn3+O 2.912 2? anion-deficient manganite, the specific magnetization, the dynamic magnetic susceptibility, and the heat capacity are investigated. This material is found to be an inhomogeneous ferromagnet below the Curie point T C ≈ 122 K, which is much lower than the Curie point determined for the stoichiometric composition (T C ≈ 268 K). An increase in magnetic field by two orders of magnitude leads to an increase in the Curie temperature by ΔT ≈ 12 K. The presence of oxygen vacancies leads to the frustration of a part, namely, V fr ≈ 22%, of the indirect Mn3+-O-Mn3+ exchange interactions, but the spin glass state is not realized. The ferromagnetic matrix of the material under study is characterized by a scatter in the exchange interaction intensities. The heat capacity is found to exhibit an anomalous behavior. Based on the Banerjee magnetic criterion, it is established that the ferromagnet-paramagnet transition observed for La 0.825 3+ Sr 0.175 2+ Mn3+O 2.912 2? anion-deficient manganite is a second-order thermodynamic phase transition. The mechanism and origin of the critical behavior of the system under investigation are discussed.  相似文献   

15.
The stability of m 1 + m 2 + m 3 ? m 4 ? Coulomb systems formed by particles of unit charge against dissociation is considered as a function of the particle mass. It is shown that, from the stability of the m 1 + m 2 + m 3 ? three-particle system, it follows that the m 1 + m 2 + m 3 ? m 4 ? four-particle system containing an additional particle of mass satisfying the condition m 4 ? ? m 3 ? is stable. The results of calculations of the stability domain for m 1 + m 2 + m 3 ? systems asymmetric in particle masses are reported. The stability of 39 asymmetric exotic four-particle molecules and mesic molecules against dissociation is established.  相似文献   

16.
D. Kivotides 《JETP Letters》2004,80(3):152-156
We calculate the topological noise characterizing the direction of line vortices in superfluid and classical turbulence by finding the intersection of line vortices with square surfaces of edge length ls positioned normal to three orthogonal axes. In the case of homogeneous superfluid turbulence in thermal counterflow, we find that the noise scales as ls along the two directions normal to the counterflow and as l s 3/2 along the direction parallel to it. In homogeneous isotropic superfluid turbulence, at T→0 K, the noise scales as l s 7/4 . In homogeneous isotropic classical turbulence, the scaling is l s 2 . We offer possible interpretations of the computed scalings, as well as justification for their differences.  相似文献   

17.
18.
We use inelastic neutron scattering to study the low-energy spin excitations of polycrystalline samples of nonsuperconducting CeFeAsO and superconducting CeFeAsO0.84F0.16. Two sharp dispersionless modes are found at 0.85 and 1.16 meV in CeFeAsO below the Ce antiferromagnetic (AF) ordering temperature of T N Ce ? 4 K. On warming to above T N Ce ? 4 K, these two modes become one broad dispersionless mode that disappears just above the Fe ordering temperature T N Fe ? 140 K. For superconducting CeFeAsO0.84F0.16, where Fe static AF order is suppressed, we find a weakly dispersive mode center at 0.4 meV that may arise from short-range Ce-Ce exchange interactions. Using a Heisenberg model, we simulate powder-averaged Ce spin wave excitations. Our results show that we need both Ce spin wave and crystal electric field excitations to account for the whole spectra of low-energy spin excitations.  相似文献   

19.
To identify the structure of emissive tunnel recombination sites in the emulsion microcrystals of silver bromide AgBr(I) with iodine contaminations and to determine the role of an emulsion medium in their formation, the temperature dependence of the luminescence spectra in the range from 77 to 120 K, the kinetics of the growth of the maximum luminescence intensity value at λ ≈ 560 nm, and the luminescence flash spectrum stimulated by the infrared light are investigated. Two types of the AgBr1 – x(I x ) (x = 0.03) microcrystals—namely, obtained in an aqueous solution and on a gelatin substrate—are used in the studies. It is established that the emissive tunnel recombination sites with a luminescence maximum at λ ≈ 560 nm in AgBr1 – x(I x ) (x = 0.03) are the {(I a - I a - )Ag i + } donor–acceptor complexes with the I a - iodine ions located in neighbor anionic sites of the AgBr(I) crystal lattice, next to which the Ag i + interstitial silver ion is positioned. With an increase in the temperature, the {(I a - I a - )Ag i + } sites undergo structural transformation into the {(I a - I a - )Agin+} sites, where n = 2, 3, …. Moreover, the {(I a - I a - )Ag in + } sites (n = 2) after the capture of an electron and hole also provide the tunnel recombination with a luminescence maximum at λ ≈ 720 nm. The influence of an emulsion medium consists in that gelatin interacts with the surface electron-localization sites, i.e., the interstitial silver ions Ag in + , n = 1, 2, and forms the complexes {Ag in 0 G+} (n = 1, 2) with them. The latter are deeper electron traps with a small capture cross section as compared to the Ag in + sites (n = 1, 2) and that manifest themselves in that the kinetics of the luminescence growth in AgBr(I) to a stationary level at λ ≈ 560 nm is characterized by the presence of “flash firing.” At the same time, the luminescence flash stimulated by IR light, for which the Ag in + (n = 1, 2) electron-localization sites are responsible, is absent. It is supposed that the electrons localized on the {Ag in + G+} complexes (n = 2) retain the capability for emissive tunnel recombination with holes localized on paired iodine sites with a luminescence maximum at λ ≈ 750 nm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号