首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ab initio EOM-CCSD calculations have been performed on molecules HmX-YHn, for X, Y = 15N, 17O, 31P, and 33S, to investigate the variation of one-bond X-Y spin-spin coupling constants 1J(X-Y) and the components of J with rotation about the X-Y single bond. The reduced Fermi-contact (FC) terms for all 10 molecules are negative and decrease in absolute value as the rotational angle theta changes from 0 degrees, at which point the lone pairs of electrons are on the same side of the X-Y bond, to 180 degrees where they are trans with respect to the X-Y bond. The signs of reduced paramagnetic spin-orbit (PSO) and spin-dipole (SD) terms are opposite that of the FC term and exhibit extremum values as theta approaches 90 degrees, the gauche conformation. While the FC term tends to dominate for molecules H2X-YH2 and H2X-YH, such is not the case for HX-YH, where the PSO and SD terms assume increased importance. Curves for 1K(X-Y) as a function of rotational angle are readily grouped according to formula H2X-YH2, H2X-YH, and HX-YH, which suggests that it is the lone pairs of electrons on X and Y which are primarily responsible for the trends observed.  相似文献   

2.
The (2,3)J(CH) dependence on dihedral angle (theta H--C--C--X) for cyclopentane derivatives was investigated. We observed that the combined use of experimentally obtained (2,3)J(CH) values and the theoretically determined dihedral angles between the corresponding nuclei can be used to infer the relative stereochemistry of the ring substituents in cyclopentane derivatives. There is a good correlation between the magnitude of (3)J(CH) and the dihedral angle between the hydrogen and the coupled carbon (R2 = 0.88).  相似文献   

3.
Two new ligands, 2-[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol (HL) and 2-[(bis(2-pyridylmethyl)amino)methyl]-4-methyl-6-(methylthio)phenol (HSL), were synthesized and were used to prepare the trinuclear copper(II) complex {[CuSL(Cl)]2Cu}(PF6)2.H2O (1) and the corresponding binuclear complexes [Cu2(SL)2](PF6)2 (2) and [Cu2L2](PF6)2 (3). The crystal structure of 1 shows two different coordination environments: two square base pyramidal centers (Cu1 and Cu1a, related by a C2 axes), acting as ligands of a distorted square planar copper center (Cu2) by means of the sulfur atom of the SCH3 substituent and the bridging phenoxo oxygen atom of the ligand (Cu2-S = 2.294 A). Compounds 2 and 3 show two equivalent distorted square base pyramidal copper(II) centers, bridged in an axial-equatorial fashion by two phenoxo groups, thus defining an asymmetric Cu2O2 core. A long copper-sulfur distance measured in 2 (2.9261(18) A) suggests a weak bonding interaction. This interaction induces a torsion angle between the methylthio group and the phenoxo plane resulting in a dihedral angle of 41.4(5) degrees. A still larger distortion is observed in 1 with a dihedral angle of 74.0(6) degrees. DFT calculations for 1 gave a ferromagnetic exchange between first neighbors interaction, the calculated J value for this interaction being +11.7 cm-1. In addition, an antiferromagnetic exchange for 1 was obtained for the second neighbor interaction with a J value of -0.05 cm-1. The Bleaney-Bowers equation was used to fit the experimental magnetic susceptibility data for 2 and 3; the best fit was obtained with J values of +3.4 and -16.7 cm-1, respectively. DFT calculations for 2 and 3 confirm the nature and the values of the J constants obtained by the fit of the experimental data. ESR and magnetic studies on the reported compounds show a weak exchange interaction between the copper(II) centers. The low values obtained for the coupling constants can be explained in terms of a poor overlap between the magnetic orbitals, due to the axial-equatorial phenoxo bridging mode observed in these complexes.  相似文献   

4.
A study is presented of the structural dependencies for scalar J-coupling and the amide donor (1)H chemical shifts in the hydrogen bonding regions of proteins. An analysis of the interactions between the donor hydrogen and acceptor oxygen orbitals in an N-H...O=C moiety suggests that there are three major structural factors for (15)N-(13)C coupling across hydrogen bonds: (1) the H...O' internuclear separation r(HO)('), (2) the H...O'=C' angle theta(2), and (3) indirect contributions involving the oxygen loan pair electrons should lead to a dependence on the H...O'=C'-N' dihedral angle rho. Density functional theory (DFT) and finite perturbation theory (FPT) were used to obtain the Fermi contact (FC) contributions to interresidue coupling in formamide dimers with systematic variation of these structural parameters. The computed (h3)J(NC)(') exhibit good correlations with cos(2) theta;(2) combined with an exponential dependence on r(HO)('). The correlation is further improved by including a dependence on the dihedral angle rho. For each of the 34 H-bonds having observable interresidue coupling in the immunoglobulin binding domain of streptococcal protein G, a formamide dimer was generated from the crystallographic structure with energy-optimized donor H-atom positions. The computed coupling constants are in reasonable agreement with the experimental, and there are excellent correlations with the simple equations involving theta;(2) and r(HO) if alpha-helix and beta-sheet regions are treated separately. This dichotomy is removed by introducing the dependence on the dihedral angle rho. Justification for the use of formamide dimers is provided by almost identical interresidue coupling constants for larger sequences extracted from the X-ray structure. The amide donor (1)H chemical shifts, which were based on DFT and GIAO (gauge including atomic orbital) methods, are in poorer agreement with the experimental data but exhibit excellent correlation with r(HO)('), theta(2), and rho.  相似文献   

5.
In contrast to literature reports of a Karplus-type curve that correlates (3)J(PH) with phosphorus-hydrogen dihedral angle, a recently reported glycine-derived 1,3,2-oxazaphospholidine (7c) has two hydrogen atoms on the ring with identical PNCH dihedral angles but measured coupling constants of ~6 and 1.5 Hz. DFT calculations were in accord with these values and suggested that the smaller coupling constant is negative. Experimental evidence of the opposite signs of these coupling constants was obtained by analysis of the ABX NMR spectrum of the new glycine-derived N-p-toluenesulfonyl phosphorus heterocycle 6c. DFT calculations on 6c and on Me(2)NPCl(2) and t-BuPCl(2) were also in accord with NMR data and allowed confirmation of unusual features including a lone pair effect on (3)J(PH), the negative coupling constant, temperature-dependent chemical shifts due to rotation about the sulfonamide S-N bond, and vicinal phosphorus-hydrogen coupling constants over 40 Hz. Calculation of phosphorus-hydrogen coupling constants both as a function of PYCH dihedral angle θ (Y = O, N, C) and lone pair-PYC dihedral angle ω shows similar θ,ω surfaces for (3)J(PH) with a range of (3)J(PH) from -4.4 to +51 Hz and demonstrates the large non-Karplus effect of lone-pair conformation on vicinal phosphorus-hydrogen coupling constants.  相似文献   

6.
We present 13 (3)J, seven (2)J and four (1)J coupling constants (24 in all) calculated using B3LYP/D95** as a function of the φ and ψ Ramachandran dihedral angles of the acetyl(Ala)(3)NH(2) capped trialanine peptide over the entire Ramachandran space. With the exception of three of these J couplings, all show significant dependence upon both dihedral angles. For each J coupling considered, a two dimensional grid with respect to φ and ψ angles can be used to interpolate the values for any pair of φ and ψ values. Such simple interpolation is shown to be very accurate. Most of these calculated J couplings should prove useful for improving the accuracy of the determination of peptide and protein structures from NMR measurements in solution over that provided by the common procedure of treating the J couplings as functions of a single dihedral angle by means of Karplus-type fittings.  相似文献   

7.
A study is presented of the structural dependencies for scalar, interproton J-coupling across two bonds in a series of substituted methanes. The coupled perturbed, density functional theory method with a B3PW91 functional and aug-cc-pVTZ-J basis sets is used to examine coupling between geminal protons (2)J(H,H') in methane and a series of substituted compounds CH(3)X (X = CH3, CH(2)CH(3), CH=CH2, CH=O, and NH2) as functions of the dihedral angle phi measured about the C1-X2 bonds. All four contributions are obtained but all conformational effects are dominated by the Fermi contact term. Simple linear combination of atomic orbitals (LCAO)-molecular orbital (MO) sum-over-states methods are used to examine the relationships of the coupling constants with dihedral angles as well as internal H-C-H and H-C1-X2 angles. This study explores some novel aspects of geminal H-H coupling including an analysis of the asymmetry in the conformational dependencies arising from non-next-nearest neighbor interactions. For each of the substituted methanes, explicit trigonometric/exponential expressions are given and these accurately reproduce the (2)J(H,H') structural dependencies with standard deviations usually less than 0.03 Hz. The molecular structures for representative bicyclic molecules were fully optimized, and DFT results for (2)J(H,H') reproduce all the trends in the experimental data. A discussion is given on the applicability of the equations for H--H coupling in the substituted methanes to coupling in the bicyclic molecules.  相似文献   

8.
The magnetostructural correlation of model Cu(II)–Ni(II) heterobinuclear complexes was studied by using the broken symmetry approach within the framework of density functional theory. The antiferromagnetic coupling interaction is weakened with the decrease of the dihedral angle between the plane O1CuO2 and the plane O1NiO2 in the core moiety CuO1O2Ni of the model from 180 to 125°, in agreement with the experimental results. The ferromagnetic behavior was also predicted theoretically with dihedral angle less than 125°. The magnetic coupling interaction is reinforced with the increase of the bond angle Cu? O? Ni. The relationship between the magnetic coupling interaction and the spin density localized on the magnetic centers or on the bridging O atoms was investigated. The bond angle Cu? O? Ni for the model with lowest energy was determined and the theoretical value (104°) is a little more than the experimental value (99°). © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

9.
The solution conformation of a furanose ring can be assessed through PSEUROT analysis of three-bond (1)H-(1)H coupling constants ((3)J(HH)) of the ring hydrogens. For each coupling constant, PSEUROT requires two parameters, A and B, which are used to translate the H[bond]C[bond]C[bond]H dihedral angle predicted from the (3)J(HH) into an endocyclic torsion angle from which the identity of the conformers can be determined. In this paper, we have used density functional theory methods to generate a family of envelope conformers for methyl furanosides 1-8. From these structures, A and B were calculated for each H[bond]C[bond]C[bond]H fragment. In turn, the values of these parameters for the arabinofuranose ring were used in PSEUROT calculations to determine the conformers populated by monosaccharides 1 and 2 as well as the furanose rings in oligosaccharides 9-15. The results of these analyses are consistent with the low-energy conformers identified from previous computational and X-ray crystallographic studies of 1 and 2.  相似文献   

10.
One-bond carbon-carbon coupling constants, 1JCC, were measured for a series of cyclic and acyclic ethers. Surprisingly, the dependence on COCC dihedral angle, tau, parallels cos(tau), rather than the cos(2tau) characteristic of n-sigma* delocalization. These results complement recently calculated 1JCH values in three ethers. The variations in 1J are not primarily determined by delocalization but instead are attributed to a dipolar interaction that affects electron density, perhaps via the hybridization.  相似文献   

11.
A theoretical study of geminal and vicinal 77Se‐1 H coupling constants in the benchmark dimethyl and diethyl selenides has been performed at the SOPPA level followed by the NJC analysis within the NBO approach to reveal their stereochemical behavior in respect with the three main structural factors, namely, (i) the dihedral angle dependences, (ii) the bond angle dependences and (iii) the lone pair effects. It has been demonstrated that both geminal and vicinal couplings provide a unique stereospecificity in respect with the orientational lone pair effect together with the geometry of a coupling pathway, which is of prime importance for the stereochemical studies of organoselenium compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been carried out to investigate the effect of a third polar near-neighbor on one-bond ((1)J(X)(-)(H) and (1h)J(H)(-)(Y)) and two-bond ((2h)J(X)(-)(Y)) spin-spin coupling constants in AH:XH:YH(3) complexes, where A and X are (19)F and (35)Cl and Y is either (15)N or (31)P. The changes in both one- and two-bond spin-spin coupling constants upon trimer formation indicate that the presence of a third molecule promotes proton transfer across the X-H-Y hydrogen bond. The proton-shared character of the X-H-Y hydrogen bond increases in the order XH:YH(3) < ClH:XH:YH(3) < FH:XH:YH(3). This order is also the order of decreasing shielding of the hydrogen-bonded proton and decreasing X-Y distance, and is consistent with the greater hydrogen-bonding ability of HF compared to HCl as the third molecule. For all complexes, the reduced X-H and X-Y spin-spin coupling constants ((1)K(X)(-)(H) and (2h)K(X)(-)(Y)) are positive, consistent with previous studies of complexes in which X and Y are second-period elements in hydrogen-bonded dimers. (1h)K(H)(-)(Y) is, as expected, negative in these complexes which have traditional hydrogen bonds, except for ClH:FH:NH(3) and FH:FH:NH(3). In these two complexes, the F-H-N hydrogen bond has sufficient proton-shared character to induce a change of sign in (1h)K(H)(-)(Y). The effects of trimer formation on spin-spin coupling constants are markedly greater in complexes in which NH(3) rather than PH(3) is the proton acceptor.  相似文献   

13.
The (1)H and (13)C NMR spectra of dicondensed indolinobenzospiropyrans as precursors of thermo- and photochromic spiropyrans, DC1-DC5, were completely assigned. Especially, the (1)H assignment and coupling characteristics of the diastereotopic protons at the carbon-3 position of the benzopyran rings were achieved by conducting (1)H-(1)H COSY and nOe experiments. The dihedral angles (theta(1), theta(2) and theta(3)) calculated from the experimental values of the vicinal coupling constants ((3)J) of DC5 are in good agreement with the observed values in the solid state. All of the carbons in the DC dye molecules were investigated through a combination of heteronuclear 2D-shift correlation spectroscopy (HETCOR) and DEPT135.  相似文献   

14.
The reduced two-bond Fermi-contact terms and the reduced spin-spin coupling constants (2h)K(X-Y) across X-H-Y hydrogen bonds for complexes stabilized by C-H-N, N-H-N, O-H-N, F-H-N, C-H-O, O-H-O, F-H-O and C-H-F hydrogen bonds are positive. The NMR Triplet Wavefunction Model (NMRTWM) indicates that the signs of the reduced FC terms and (2h)K(X-Y) are determined by excited triplet states that have an odd number of nodes intersecting the X-Y axis between X and Y, thereby leading to an antiparallel alignment of the nuclear magnetic moments of atoms X and Y.  相似文献   

15.
The results of FPT/INDO theory together with the observed 2J(HH) coupling in benzyl groups (Ph · CH2X) leads to a simple equation 2J(HH) = A+B cos θ+C cos 2θ where θ is the C.C.C.X dihedral angle, and X = C,H. The extension to other X substituents can be obtained from additivity rules.  相似文献   

16.
<正> The reaction of Fe3(CO)12 with P(SPh)3 yields the tile compound. C41H30Fe2O5P2S6, Mr = 968. 65, monoclinic, space group, P21/n, a = 14. 449(9), b = 18. 046(11), c=16.871(10)(?), β=98. 76°, V = 4348(?)3, Z = 4, Dc=1. 480g/ cm3, λ(MoKα) = 0. 71073(?) The structure was determined by direct methods and difference Fourier syntheses and refined by full-matrix least-squares procedure to R = 0.084, Rw = 0.144 for 4059 reflections. Fe(1)-Fe(2) = 2. 576(6), Fe(2)-P(2) = 2.194(9)(?). The dihedral angle between the Fe(l)SFe(2) and Fe(1)PFe(2) planes is 81. 9°. The other one (dihedral angle between SFe(1)P and SFe(2)P planes) is 75. 2°.  相似文献   

17.
Numerous well-behaved Karplus curves correlating dihedral angle (phi) and NMR coupling constants (3JXY) exist for X-C-Z-Y fragments with X or Y = H, C, F, and P. Absent is the enigmatic F-C-C-F moiety. By calculating the four Ramsey contributions to 3JFF for F-CH2-CH2-F, a pleasing phi/3JFF curve with both positive and negative regions arises. Unlike the H-C-C-H curve, F-C-C-F is PSO vs FC dominated. The latter and the F lone electron pairs cause both the negative J values and the substituent-induced J-leveling effect.  相似文献   

18.
Through-hydrogen bond spin-spin coupling has been investigated computationally in the formamide dimer and in fragments of the protein ubiquitin. The Fermi-contact term was calculated by finite perturbation theory with the B3LYP DFT method with several basis sets. The distance and angular dependence of the 3J(N,C') coupling constant (N-H--O=C) in the hydrogen-bonded formamide dimer was firstly examined for a wide range of mutual arrangements, also in relation to the stability of the dimer. The magnitude of 3J(N,C') is relatively insensitive to the dihedral angle between the two amide planes, whereas values between 1-2 Hz are calculated for a variety of arrangements, including non-linear hydrogen bonds, in agreement with the shape of some occupied, low-lying molecular orbitals which connect donor and acceptor. Then, fragments of the ubiquitin protein (for which such coupling constants are experimentally available) were generated by removing from the experimental structure all amino acids except those involved in hydrogen bonding, and coupling constants were calculated for such fragments. Although calculated 3J(N,C') values are sometimes overestimated, they generally correlate with the corresponding experimental values.  相似文献   

19.
The crystal structures of acetato-N-tosylimido-meso-tetraphenylporphyrinatothallium(III), Tl(N-NTs-tpp)(OAc) (1), and acetato-N-tosylimido-meso-tetraphenylporphyrinatogallium(III), Ga(N-NTs-tpp)(OAc) (2), were determined. The coordination sphere around the Tl3+ ion is a distorted square-based pyramid in which the apical site is occupied by a chelating bidentate OAc- group, whereas for the Ga3+ ion, it is a distorted trigonal bipyramid with O(3), N(3), and N(5) lying in the equatorial plane. The porphyrin ring in the two complexes is distorted to a large extent. For the Tl3+ complex, the pyrrole ring bonded to the NTs ligand lies in a plane with a dihedral angle of 50.8 degrees with respect to the 3N plane, which contains the three pyrrole nitrogens bonded to Tl3+, but for the Ga3+ complex, this angle is found to be only 24.5 degrees. In the former complex, Tl3+ and N(5) are located on the same side at 1.18 and 1.29 A from its 3N plane, but in the latter one, Ga3+ and N(5) are located on different sides at -0.15 and 1.31 A from its 3N plane. The free energy of activation at the coalescence temperature Tc for the intermolecular acetate exchange process in 1 in CD2Cl2 solvent is found to be delta G++171 = 36.0 kJ/mol through 1H NMR temperature-dependent measurements. In the slow-exchange region, the methyl and carbonyl (CO) carbons of the OAc- group in 1 are separately located at delta 18.5 [3J(Tl-13C) = 220 Hz] and 176.3 [2J(Tl-13C) = 205 Hz] at -110 degrees C.  相似文献   

20.
In this paper, we present the first high-resolution spectra and analysis of the nu 4 fundamental bands of fully (18)O-substituted nitrous acid, trans- and cis-H(18)ON(18)O. These bands are not perturbed by neighboring vibrational levels and were used to determine for the first time accurate rotational and centrifugal distortion constants of the ground and nu 4 = 1 states of trans- and cis-H(18)ON(18)O. The ground-state rotational constants were then used, together with the rotational constants of other HONO isotopic species and with rotation-vibration parameters from ab initio calculations, to determine accurate semi-experimental equilibrium structures of trans- and cis-HONO. Our study confirms the results of a recent work by Demaison et al. (J. Phys. Chem. A 2006, 110, 13609-13617) concerning the structure of trans-HONO, whereas the new structure of cis-HONO obtained in this paper is a significant improvement compared with the previous work of Cox et al. (J. Mol. Struct. 1994, 320, 91-106). The recommended parameters for the equilibrium structure of cis-HONO are r(e)(ON) = 1.1816(10) A, r(e)(N-O) = 1.3887(10) A, r(e)(O-H) = 0.9744(7) A, angle(e)(ONO) = 113.18(1) degrees, and angle(e)(HON) = 104.67(4) degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号