首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a promising one-dimensional material for building nanodevices, single-wall carbon nanotubes (SWNTs) should be organized into a rational architecture on the substrate surface. In this study, horizontally aligned SWNTs with two alignment modes were synthesized on the same R-plane sapphire wafer by chemical vapor deposition with cationized ferritins as catalysts. In the middle part of the wafer, SWNTs were aligned on the R-plane sapphire in the direction [1101]. At the edge of the wafer, SWNTs were aligned in the tangential direction to the wafer edge. The comparison of these two groups of SWNTs suggests the competition between the two alignment modes and indicates that atomic steps in high density have superior influence on the SWNTs' alignment to the crystal structure on the surface of the sapphire substrate. A "raised-head" growth mechanism model is proposed to explain why catalysts can stay active during the horizontally aligned growth of relatively long SWNTs with the strong interaction between SWNTs and the sapphire substrate.  相似文献   

2.
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a new, bimetallic FeRu catalyst affords SWNT growth with narrow diameter and chirality distribution in methane CVD. At 600 degrees C, methane CVD on FeRu catalyst produced predominantly (6,5) SWNTs according to UV-vis-NIR absorption and photoluminescence excitation/emission (PLE) spectroscopic characterization. At 850 degrees C, the dominant semiconducting species produced are (8,4), (7,6), and (7,5) SWNTs, with much narrower distributions in diameter and chirality than materials grown by other catalysts. Further, we show that narrow diameter/chirality growth combined with chemical separation by ion exchange chromatography (IEC) greatly facilitates achieving single (m,n) SWNT samples, as demonstrated by obtaining highly enriched (8,4) SWNTs with near elimination of metallic SWNTs existing in the as-grown material.  相似文献   

3.
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution are synthesized by thermal chemical vapor deposition (CVD) of methane over Fe/MgO catalyst on the basis of parametric study considering Fe loading, reaction temperature and time, methane concentration, and structure of a support material. We found that the porous MgO support gives the SWNTs with a narrow diameter distribution with the mean diameter and standard deviation of 0.93 and 0.06 nm, respectively, only when the Fe loading and reaction temperature are relatively low. The higher Fe loading and/or the higher reaction temperature enlarged the nanotube diameter, forming double-walled carbon nanotubes (DWNTs) in addition to SWNTs. This result indicates that only the diameter of Fe nanoparticles determines the growth of either SWNTs or DWNTs on the MgO support. The fluorescence and absorption spectra of the nanotube dispersion in D(2)O solution with sodium dodecyl sulfate (SDS) were studied to identify their chirality distribution. The fluorescence of the uniform-diameter SWNTs indicates the formation of the near armchair structures. On the other hand, the SWNTs synthesized over the catalyst with a high Fe loading, 3 wt %, showed a wide chirality distribution including the near zigzag structure. The synthesis of the SWNTs with a narrow diameter distribution could be applied to the selection of SWNTs with a specific chirality based on postsynthesis separation.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) demonstrate remarkable electronic and mechanical properties useful in developing areas such as nanoelectromechanical systems and flexible electronics. However, the highly inhomogeneous electronic distribution arising from different diameters and chirality in any given as-synthesized SWNT samples imposes severe limitations. Recently demonstrated selective chemical functionalization methods may provide a simple scalable means of eliminating metallic tubes from SWNT transistors and electronic devices. Here, we report on combined electron transport and Raman studies on the reaction of 4-bromobenzene diazonium tetrafluoroborate directly with single and networks of SWNT transistors. First, Raman studies are carried out on isolated individual SWNTs grown on SiO2/Si substrates by chemical vapor deposition with and without metal contacts. Metallic tubes are found to have, on average, higher reactivity toward diazonium reagents. However, a considerable degradation of electrical properties of semiconducting tubes occurs if the reaction is carried out to the point where the conductivity of metallic tubes is significantly suppressed. Insights from single-tube studies are then applied to elucidate the electrical and the Raman responses of SWNT random network transistors of different channel lengths to chemical functionalization.  相似文献   

5.
We report on the monotonic Raman frequency shift and intensity variation when a laser spot moves along the same single-walled carbon nanotube (SWNT) for both the radial-breathing mode (RBM) and the G-band. Our substrates are Si wafers coated with thermal oxide, and trenches with widths of 1-80 mum are etched in the SiO2 by photolithography and reactive ion etching. SWNTs are grown by chemical vapor deposition and lie on top of the SiO2 and across the trenches. When the laser spot moves from the middle of the trench to the SiO2 region along the nanotube, we observe a clear upshift in the RBM and G-band frequencies and a decrease of intensity. The effect is more significant with large ( approximately 2 nm) diameter nanotubes and appears to be chirality dependent. These studies provide important information about environmental effects on single-walled carbon nanotube resonant Raman spectroscopy.  相似文献   

6.
Resonance Raman spectroscopy/microscopy was used to study individualized single-walled carbon nanotubes (SWNTs) both in aqueous suspensions as well as after spin-coating onto Si/SiO2 surfaces. Four different SWNT materials containing nanotubes with diameters ranging from 0.7 to 1.6 nm were used. Comparison with Raman data obtained for suspensions shows that the surface does not dramatically affect the electronic properties of the deposited tubes. Raman features observed for deposited SWNTs are similar to what was measured for nanotubes directly fabricated on surfaces using chemical vapor deposition (CVD) methods. In particular, individual semiconducting tubes could be distinguished from metallic tubes by their different G-mode line shapes. It could also be shown that the high-power, short-time sonication used to generate individualized SWNT suspensions does not induce defects in great quantities. However, (additional) defects can be generated by laser irradiation of deposited SWNTs in air, thus giving rise to an increase of the D-mode intensity for even quite low power densities (approximately 10(4) W/cm2).  相似文献   

7.
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.  相似文献   

8.
化学气相沉积(CVD)法是制备大面积、高质量石墨烯材料的主要方法之一,但存在衬底转移和碳固溶等问题,本文选用蓝宝石衬底弥补了传统CVD法的不足。利用CVD法在蓝宝石衬底上生长石墨烯材料,研究生长温度对石墨烯表面形貌和晶体质量的影响。原子力显微镜(AFM)、光学显微镜(OM)、拉曼光谱和霍尔测试表明,低温生长有利于保持材料表面的平整度,高温生长有利于提高材料的晶体质量。研究氢气和碳源对蓝宝石衬底表面刻蚀作用机理,发现氢气对蓝宝石衬底有刻蚀作用,而单纯的碳源不能对衬底产生刻蚀效果。在1200 ℃下,直径为50 mm的晶圆级衬底上获得平整度和质量相对较好的石墨烯材料,室温下载流子迁移超过1000 cm2·V-1·s-1。  相似文献   

9.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

10.
We demonstrate the ability to stably sequester individual single-walled carbon nanotubes (SWNTs) within self-contained nanometer-scale aqueous volumes arrayed in an organic continuum. Large areal densities of 4 × 10(9) cm(-2) are readily achieved. SWNTs are incorporated into a surfactant mesophase which forms 2.3 nm diameter water channels by lyotropic self-assembly. Near-infrared fluorescence spectroscopy demonstrates that the SWNTs exist as well-dispersed tubes that are stable over several months and through multiple cycles of heating and cooling. Absence of physical distortion of the mesophase suggests that the SWNTs are stabilized by adsorbed surfactants that do not extend considerably from the surface. Our findings have important implications for templated assembly of carbon nanotubes using soft mesophases and the development of functional nanocomposites.  相似文献   

11.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

12.
A strategy to prepare horizontally aligned single-walled carbon nanotubes(SWNTs) at moderate temperatures(≤600 ℃) were developed.Using ferocene as the catalyst precursor,Fe nanoparticles are formed in the gaseous phase and catalyze the nucleation and growth of SWNTs in situ.Then the resultant SWNTs are deposited onto the substrates downstream and aligned by the surface lattice of the ST-cut single crystal quartz.The preparation of SWNT arrays at moderate temperatures is important for combining the tube growth with device fabrication.  相似文献   

13.
Band gap photoluminescence (PL) behaviors of single-walled carbon nanotubes (SWNTs) grown by the methods of chemical vapor deposition and pulsed-laser vaporization are investigated over the wide diameter range (≈0.8–1.4 nm). The peak intensity of the PL signals strongly depends on chirality and the ‘(2n + m) family type’ of SWNTs. Based on the PL results, a population analysis of these SWNTs is conducted by combining the calculated PL yields for each (nm) tube. The results are directly compared with the histograms of diameter distributions estimated by the transmission electron microscope (TEM) observations to check the validity of the analysis.  相似文献   

14.
We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.  相似文献   

15.
We propose a surface condensation method for assembling single-walled carbon nanotubes (SWNTs) on gold. The as-prepared long and randomly tangled SWNTs were cut into short pipes by chemical oxidation, allowing the nanotubes to be terminated by carboxyl functionalities. A surface condensation reaction was then performed by immersing an amino self-assembled monolayer (SAM)-modified gold substrate into the dimethylformamide suspension of carboxylic nanotubes with the aid of dicyclohexylcarbodiimide condensation agent. Raman spectroscopy and atomic force microscopy (AFM) results show that a highly aligned assembly of SWNTs has been formed on gold, with the nanotubes standing on the surface stable enough for a long ultrasonication. In combination with the microcontact printing (muCP) technique, we have fabricated patterned nanotube assemblies using this surface condensation method. Moreover, we found that the "giant" carbon nanotubes tend to form bundles on an amino-terminating surface, likely following a nucleation-growth model.  相似文献   

16.
We report high-throughput growth of highly aligned single-walled carbon nanotube arrays on a-plane and r-plane sapphire substrates. This is achieved using chemical vapor deposition with ferritin as the catalyst. The nanotubes are aligned normal to the [0001] direction for growth on the a-plane sapphire. They are typically tens of micrometers long, with a narrow diameter distribution of 1.34 +/- 0.30 nm. In contrast, no orientation was achieved for growth on the c-plane and m-plane sapphire, or when Fe films, instead of ferritin, were used as the catalyst. Such orientation control is likely related to the interaction between carbon nanotubes and the sapphire substrate, which is supported by the observation that when a second layer of nanotubes was grown, they followed the gas flow direction. These aligned nanotube arrays may enable the construction of integrable and scalable nanotube devices and systems.  相似文献   

17.
In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π‐gelator ( MC‐OPV ) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10?4 m , MC‐OPV did not exhibit a CD signal; however, the addition of 0–0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High‐resolution TEM analysis and solid‐state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical‐cable formation has not been reported previously.  相似文献   

18.
Single-walled carbon nanotube (SWNT) horizontal arrays with specific chirality can be enriched using solid carbide catalysts on substrates. However, scale-up production by continuous loading of the solid catalysts onto the substrates is challenging. Described here is the preparation of a floating carbide solid catalyst (FSC) for the controlled growth of SWNTs. The FSC, titanium carbide (TiC) nanoparticle, was directly obtained in the carrier gas phase by decomposition and carbonization of the titanocene dichloride precursor at high temperature. By using the TiC nanoparticle FSC, both SWNT horizontal arrays and randomly distributed networks can be obtained. The chirality of the as-grown SWNTs were thermodynamically controlled to have fourfold symmetry. Further optimization of growth condition resulted in an abundance of (16,8) tubes with about a 74 % content. This FSC chemical vapor deposition (FSCCVD) method has potential for realizing mass growth of SWNTs with controlled structures.  相似文献   

19.
A fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified. In particular, in situ annealing of Fe catalyst in an N2 atmosphere was found to improve SWNT selectivity and quality. H2 prereduction at 900 degrees C for 5 min was also found to enhance SWNT selectivity and quality for SiO2/Si supported catalyst, albeit of lower quality for sapphire supported catalyst. The application of positive dc bias voltage (+200 V) during SWNT growth was shown to be very effective in removing amorphous carbon impurities while enhancing graphitization, SWNT selectivity, and vertical alignment. The results of this study should promote the use of exposed Fe nanoparticles supported on different substrates for the growth of high-quality SWNTs by PECVD.  相似文献   

20.
The direct formation of iron phosphate nanoparticles on hydroxyl-terminated SiO(2)/Si substrates with a narrow size distribution (average diameter = 2.2 nm) is achieved by a simple room temperature spontaneous reaction of ferric chloride and phosphoric acid. Single-walled carbon nanotubes (SWNTs) are grown in high yield from the synthesized iron phosphate nanoparticles by the thermal chemical vapor deposition (CVD) method, as confirmed by atomic force microscopy (AFM) and Raman spectroscopy. Furthermore, three-terminal, p-type, nanotube network field effect transistor (FET) devices are successfully fabricated using the synthesized SWNTs via the photolithography technique. The reduced solubility of Fe(III) ions when they form iron phosphate salts in aqueous media is the main driving force for the nanoparticle formation. Systematic control experiments reveal that the surface property, concentration, and pH of the reaction solution play equally important roles in the formation of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号