共查询到20条相似文献,搜索用时 15 毫秒
1.
Clausen C Gryko DT Yasseri AA Diers JR Bocian DF Kuhr WG Lindsey JS 《The Journal of organic chemistry》2000,65(22):7371-7378
Our prior designs for molecular-based information storage devices have employed multiple redox-active units organized in weakly coupled, covalently linked arrays. To explore a simpler design, we report here the synthesis of porphyrin arrays where porphyrins with identical oxidation potentials are directly linked to one another instead of joined via a molecular linker. Oxidative coupling with AgPF(6) of zinc(II)-5,15-bis(4-tert-butylphenyl)-10-phenylporphyrin, obtained by a rational synthesis, afforded the expected dimer joined by a meso-meso linkage and an unexpected trimer joined by meso-meso linkages. For attachment to an electroactive surface we synthesized a meso-linked porphyrin dimer with a thiol-linker in one of the meso positions. The S-acetyl protecting group was used to avoid handling free thiol groups. Coupling of zinc(II)-5,10,15-tris(3, 5-di-tert-butylphenyl)porphyrin ("upper half") and zinc(II)-5-[4-(S-acetylthio)phenyl]-10,20-bis(3, 5-di-tert-butylphenyl)porphyrin ("lower half") afforded three different meso-linked dimers with the desired dimer as the main product. Electrochemical examination of the meso-linked dimer in solution shows that the first two oxidation potentials of the array differ by approximately 0.15 V and straddle the value exhibited by the monomeric constituents. The third and fourth oxidation potentials of the array are also split although to a lesser extent ( approximately 0.08 V) than the first and second. For the meso-linked trimer, the first three oxidation waves are also split; however, these waves are severely overlapped. The electrochemical behavior of the dimers and trimer is indicative of strong electronic interactions among the porphyrins. The thiol-derivatized meso-linked dimers form self-assembled monolayers (SAMs) on gold via in situ cleavage of the S-acetylthio protecting group. The porphyrin SAM exhibits four well-resolved oxidation waves. Regardless, the meso-meso linkage is relatively unstable upon formation of the pi-cation radical(s). This characteristic indicates that the structural motif is of limited utility for molecular information storage elements. 相似文献
2.
Gao J Yu A Itkis ME Bekyarova E Zhao B Niyogi S Haddon RC 《Journal of the American Chemical Society》2004,126(51):16698-16699
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized. 相似文献
3.
Clausen C Gryko DT Dabke RB Dontha N Bocian DF Kuhr WG Lindsey JS 《The Journal of organic chemistry》2000,65(22):7363-7370
We present the rational design and synthesis of multiporphyrin arrays containing thiol-derivatized linkers for the purpose of multibit molecular information storage. Porphyrin dimers and trimers were synthesized by the Pd-mediated coupling of iodo-substituted and ethynyl-substituted porphyrin building blocks in 5-51% yields. Each porphyrin dimer bears one S-acetylthio group. The architecture of the trimers incorporates a trans-substituted porphyrin (central) bearing two S-acetylthio groups and two diphenylethyne-linked porphyrins (wings) in a trans geometry. The central porphyrin and the wing porphyrins bear distinct substituents and central metals, thereby affording different oxidation potentials. The S-acetylthio groups provide a means for attachment of the arrays to an electroactive surface. The dimers are designed for vertical orientation on an electroactive surface while the trimers are designed for horizontal orientation of the central porphyrin. Altogether seven different arrays were synthesized. Each array forms a self-assembled monolayer (SAM) on gold via in situ cleavage of the S-acetyl protecting group. The SAM of each array is electrochemically robust and exhibits multiple, reversible oxidation waves. In general, however, the trimeric arrays appear to form more highly ordered monolayers that exhibit sharper, better-defined redox features. 相似文献
4.
We demonstrate noncovalent electrostatic and π-π interactions to assemble semiconducting single wall carbon nanotube (SWCNT)-C(60)@COP nanohybrids. The C(60)@COP light harvesting complexes bind strongly to SWCNTs due to significant π-π-stacking between C(60), the aromatic dicarbazolylacetylene moieties and the nanotube surfaces. 相似文献
5.
6.
《Electrochemistry communications》2008,10(6):872-875
Based on layer-by-layer assembled DNA functionalized single-walled carbon nanotube hybrids, a DNA biosensor for the detection of arsenic(III) in a nearly physiological pH environment was developed. The redox process between arsenic(III) and arsenic(0) on the biosensor was proved. The growth of those hybrids on glassy carbon electrode was monitored by detecting arsenic(III). The arsenic(III) current on the biosensor was similar over a broad pH range (3.0–8.0) and the limit of detection (S/N = 3) was 0.05 μg L−1 at pH 7.0. The biosensor can be reused up to 16 times. 相似文献
7.
Rouse JH 《Langmuir : the ACS journal of surfaces and colloids》2005,21(3):1055-1061
Single-walled carbon nanotubes (SWCNTs) were directly dispersed into various alcohols by sonicating the nanotubes in the presence of poly(4-vinylpyridine) (P4VP). Depending upon the alcohol, it was possible to disperse up to 0.3 g of SWCNTs per liter of alcohol using only 0.6 g of P4VP, and with solution stability greater than 6 weeks. Scanning electron microscopy of "bucky" paper prepared from the polymer-treated nanotubes revealed reduced bundle size compared to the corresponding untreated nanotube paper. Additionally, the applicability of the dispersion system in the formation of SWCNT/silica composites is demonstrated. 相似文献
8.
Bartelmess J Soares AR Martínez-Díaz MV Neves MG Tomé AC Cavaleiro JA Torres T Guldi DM 《Chemical communications (Cambridge, England)》2011,47(12):3490-3492
We report on immobilizing H(2)/Zn-porphyrin-Zn-phthalocyanine conjugates onto single wall carbon nanotubes and by using the excellent stability of the resulting suspensions we were able to demonstrate for the first time the sequence of energy transfer-electron transfer in SWNT donor-acceptor conjugates. 相似文献
9.
Fourier transform infrared spectroscopy is used to study CO adsorption in single-walled carbon nanotubes. Evidence for adsorption in endohedral and groove/external surface sites is presented through displacement studies involving both CO and CO2. Blue-shifted CO stretching frequencies also indicate that CO hydrogen bonds to hydroxyl functionalities created on the nanotubes by acid purification steps. N2 surface area measurements are used to further understand the porosity of the nanotube samples and to help explain the spectroscopic results. 相似文献
10.
Vladimir B. Bojinov Nikolai I. Georgiev Peter S. Nikolov 《Journal of photochemistry and photobiology. A, Chemistry》2008,197(2-3):281-289
This paper reports on the design, synthesis and spectral characteristics of a novel PAMAM dendron (7), core and peripherally functionalized with 1,8-naphthalimide fluorophores. The novel compound 7 was configured as light harvesting antenna where the system surface is functionalized with “donor” dyes (blue emitting 1,8-naphthalimides) that are capable of absorbing light and efficiently transferring the energy to a single “acceptor” dye (yellow-green emitting 1,8-naphthalimide) in the focal point of the dendron. The overlap between the emission of the donor and the absorbance of the acceptor was more than 95%. As a result of the energy transfer, the blue emission intensity of the periphery in the donor–acceptor system was decreased with 93%, while the yellow-green core fluorescence enhancement (λex = 360 nm) of the system was more than 26 times with respect to the fluorescence intensity of the comparative yellow-green emitting 1,8-naphthalimide. This indicates efficient energy transfer between the donor and acceptor dye fragments and that the novel compound 7 would be able to act as a highly efficient light harvesting antenna. 相似文献
11.
Nanocomposites of polycarbonate (PC) containing low concentrations of pristine and COOH and OH functionalized single-walled
carbon nanotubes (SWNTs, COOH-SWNTs and OH-SWNTs) were prepared by melt-mixing and analyzed using rheology and scanning electron
microscopy (SEM). The steady state and linear viscoelastic behavior of each nanocomposite material is presented and compared
to that of the neat PC. SEM analysis revealed that samples containing functionalized SWNTs were more dispersible than samples
containing the pristine SWNTs. 相似文献
12.
A simple model for joining two single-walled carbon nanotubes (SWNTs) with different, arbitrary chiralities is used to systematically label junction structures which contain pentagon-heptagon pairs. The model is also used, together with density functional theory, to study the energetics of diameter and chirality changes of thin SWNTs during catalyzed growth or regrowth. We choose zigzag and armchair SWNTs attached to a Ni(55) cluster for our case studies. 相似文献
13.
Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles 总被引:2,自引:0,他引:2
Carbon nanotubes have been proposed as support materials for numerous applications, including the development of DNA sensors. One of the challenges is the immobilization of DNA or other biological molecules on the sidewall of carbon nanotubes. This paper introduces a new fabrication of DNA-carbon nanotubes particles using the layer-by-layer (LBL) technique on single-walled carbon nanotubes (SWCNTs). Poly(diallyldimethylammonium) (PDDA), a positively charged polyelectrolyte, and DNA as a negatively charged counterpart macromolecule are alternatively deposited on the water-soluble oxidized SWCNTs. Pure DNA/PDDA/SWCNTs particles can be prepared and separated by simple unltracentrifugation. The characterization of DNA/PDDA/SWCNTs particles was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, Raman spectroscopy, and thermogravimetric analysis (TGA). An electrode modified by the DNA/PDDA/SWCNTs particles shows a dramatic change of the electrochemical signal in solutions of tris(2,2'-bipyridyl)ruthenium(II) ((Ru(bpy)(3)2+) as a reporting redox probe. A preliminary application of the DNA-modified carbon nanotubes in the development of DNA sensors used in the investigation of DNA damage by nitric oxide is presented. 相似文献
14.
Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments 总被引:10,自引:0,他引:10
Xu X Ray R Gu Y Ploehn HJ Gearheart L Raker K Scrivens WA 《Journal of the American Chemical Society》2004,126(40):12736-12737
Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes. Two major impurities were isolated: fluorescent carbon and short tubular carbon. Analysis of these two classes of impurities was done. The methods described may be readily extended to the separation of other water-soluble nanoparticles. The separated fluorescent carbon and short tubule carbon species promise to be interesting nanomaterials in their own right. 相似文献
15.
We have used atomically detailed simulations to examine the adsorption and transport diffusion of CO2 and N2 in single-walled carbon nanotubes at room temperature as a function of nanotube diameter. Linear and spherical models for CO2 are compared, showing that representing this species as spherical has only a slight impact in the computed diffusion coefficients. Our results support previous predictions that transport diffusivities of molecules inside carbon nanotubes are extremely rapid when compared with other porous materials. By examining carbon nanotubes as large as the (40,40) nanotube, we are able to compare the transport rates predicted by our calculations with recent experimental measurements. The predicted transport rates are in reasonable agreement with experimental observations. 相似文献
16.
Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers 总被引:6,自引:0,他引:6
Poly(aminobenzene sulfonic acid) (PABS) and polyethylene glycol (PEG) were covalently attached to single-walled carbon nanotubes (SWNTs) to form water-soluble graft copolymers. Quantitative near-IR (NIR) spectroscopic studies of these SWNT graft copolymers indicate a water solubility of about 5 mg/mL, and atomic force microscopy studies show a fairly uniform length and diameter. On the basis of thermogravimetric analysis, the loading of SWNTs in the graft copolymers is estimated to be 30% for SWNT-PABS and 71% for SWNT-PEG. NIR spectroscopic studies of SWNT-PABS show that this graft copolymer has a ground state that is a hybrid of the electronic structures of the isolated PABS and SWNT macromolecules. 相似文献
17.
Siwinee Tetasang Somchai Keawwangchai Banchob Wanno Vithaya Ruangpornvisuti 《Structural chemistry》2012,23(1):7-15
The structures of mono- and di-podal pyrrolic amides functionalized (5,5) single-walled carbon nanotubes (SWCNTs) and their complexes with fluoride, chloride, and bromide ions were obtained using the two-layered ONIOM(MO:MO) and density functional theory (DFT) methods. The binding energies between halide ions and all the receptors and their charge transfers were obtained using DFT method. The computational results indicate that the pyrrolic amide functionalized on the SWCNT affects to the density of state and energy gap of SWCNT. All the free receptors, mono-, di-podal pyrrolic amides and the functionalized SWCNT forming the strongest complexes were found. 相似文献
18.
A simple procedure is described that locks small quantities of SF6, CO2, and 13CO2 into opened single-walled carbon nanotube (SWNT) bundles and keeps the gas in the SWNTs above the desorption temperature of these molecules. The technique involves opening the SWNTs with ozonolysis at 300 K followed by vacuum-annealing at 700 K. Gases are then cryogenically adsorbed into the opened SWNTs and locked into the SWNT pores by functionalizing the sample with a low-temperature ozone treatment. The low-temperature ozone treatment functionalizes the entry ports into the SWNT pores, which in turn create a physical barrier for gases trying to desorb through these functionalized ports. The samples are stable under vacuum for periods of at least 24 h, and the trapped gases can be released by vacuum-heating to 700 K. Reduced quantities of the trapped gases remain in the SWNTs even after exposure to room air. Fourier transform infrared spectroscopy is used to monitor the functionalities resulting from the ozone treatment and to detect the trapped gas species. 相似文献
19.
Structural Chemistry - The detection methods used to analyze abused drugs should be sensitive sufficiently. Here in, we propose carbon nanotube (CNT) functionalized with COOH and CONHCH3 groups as... 相似文献
20.
Song Liu Qian Shen Yang Cao Lin Gan Zhenxing Wang Michael L. Steigerwald Xuefeng Guo 《Coordination chemistry reviews》2010,254(9-10):1101-1116
Because of the one-dimensional (1D) nanostructural nature of single-walled carbon nanotubes (SWNTs) and their advantages of chemical flexibility and sensitivity arising from the susceptibility of their active surfaces to interacting species, great effort has been made to integrate carbon nanotube field-effect transistors (NTFETs) into functional optoelectronic devices capable of converting external stimuli to easily detectable electrical signals. In this Review article, we aim to capture recent advances of rational design and chemical functionalization of NTFETs for the purpose of switching or biosensing applications. To provide a deeper understanding of the device responses to analytes, this review will also survey the proposed sensing mechanisms. As demonstrated by these remarkable examples, the concept of combining the proper selection of functional molecular materials and molecular self-assembly with device micro/nanofabrication offers attractive new prospects for constructing NTFET-based molecular optoelectronic devices with desired functionalities. 相似文献