首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure and O2-reactivity of a series of copper(I) complexes supported by the pyridylalkylamine ligands are summarized, and the ligand effects such as the chelate ring size effect (five- vs. six-membered ring), the denticity effect (tetradentate vs. tridentate vs. didentate), the steric effect of 6-methylpyridine and the steric and/or electronic effects of N-alkyl substituents are discussed in detail.  相似文献   

2.
Copper(I) and -(II) complexes of beta-diketiminate ligands with identical flanking 2,6-diisopropylphenyl groups but divergent backbone substitution patterns were prepared and structurally characterized, and reactions of the Cu(I) species with O(2) at low temperature were explored. Despite being far removed from the coordinated metal ion, the different backbone patterns significantly influence the steric encumbrance exerted by the ligands, as revealed by differences in (a) the structural features of the Cu(I) and Cu(II) complexes and (b) the course of the oxygenation reactions of the Cu(I) compounds. With the less hindered ligand, a rare example of a neutral bis(mu-oxo)dicopper complex was identified on the basis of its diagnostic spectral features (UV-vis, resonance Raman, EPR) and the stoichiometry of O(2) uptake (Cu:O(2) = 2:1). In contrast, oxygenation of the Cu(I) complexes supported by the more hindered ligands yielded novel (superoxo)copper complexes, identified by a Cu:O(2) ratio of 1:1, a lack of an EPR signal, and O-isotope sensitive resonance Raman spectral features (nu(O)(-)(O) = 968 cm(-1), Delta(18)O(2) = 51 cm(-1)). Symmetric coordination of the superoxo ligand is proposed on the basis of Raman data acquired using (16)O(18)O (single peak at 943 cm(-1)).  相似文献   

3.
The substitution reactions of sulfide by phosphines on Pt(IV) complexes having a cyclometalated imine ligand, two methyl groups in a cis geometrical arrangement, and a halogen and a sulfide as ligands, [Pt (Me)(2)X(C-N)(SR(2))], have been studied as a function of temperature, solvent, and electronic and steric characteristics of the phosphines, sulfides, X, and C-N. In most of these cases, a limiting dissociative mechanism has been found, where the dissociation of the sulfide ligand corresponds to the rate-determining step. The intermediate species formed behaves as a true pentacoordinated Pt(IV) compound in a steady-state concentration only for the systems with SMe(2); for the bulkier SEt(2) and SBzl(2) leaving ligands the rate constants and activation parameters show an important degree of solvent dependence, which correlates with the ability of the solvent to form hydrogen bonds. The X-ray crystal structure of one of the dibenzyl sulfide complexes has been determined, and the geometrical arrangement of the ligands has been determined by NOE NMR measurements at low temperature. The nature of the solvent, imine, sulfide, and halogen ligands produces differences in the reaction rates, which can be quantified very well by the corresponding DeltaS values that move from +48 to -90 J K(-1) mol(-1). The reaction on [Pt(Me)(2)F(C(5)CF(4)CHNCH(2)Ph) (SMe(2))] has been found to take place via a mechanism that depends strongly on the bulkiness of the substituting phosphine. While for PCy(3) the reaction is dissociative, for smaller entering ligands the first associatively activated substitution mechanisms on organometallic Pt(IV) complexes have been established with values of DeltaH and DeltaS in the 28-44 kJ mol(-1) and -120 to -83 J K(-1) mol(-1) ranges. Important intramolecular hydrogen bonding in the starting material can be held responsible for this difference with the remaining systems.  相似文献   

4.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

5.
6.
A Cu(I) complex of 3-ethynyl-phenanthroline covalently immobilized onto an azide-modified glassy carbon surface is an active electrocatalyst for the four-electron (4-e) reduction of O(2) to H(2)O. The rate of O(2) reduction is second-order in Cu coverage at moderate overpotential, suggesting that two Cu(I) species are necessary for efficient 4-e reduction of O(2). Mechanisms for O(2) reduction are proposed that are consistent with the observations for this covalently immobilized system and previously reported results for a similar physisorbed Cu(I) system.  相似文献   

7.
Substituent effects of beta-diketiminate ligands on the structure and physicochemical properties of the copper(II) complexes have been systematically investigated by using 3-iminopropenylamine derivatives R1LR3H, R3-N=CH-C(R1)=CH-NH-R3, where R1 is Me, H, CN, or NO2, and R3 is Ph, Mes (mesityl), Dep (2,6-diethylphenyl), Dipp (2,6-diisopropylphenyl), or Dtbp (3,5-di-tert-butylphenyl). When the ligands with R3=Ph or Dtbp were treated with CuII(OAc)2, bis(beta-diketiminate) copper(II) complexes exhibiting distorted tetrahedral geometries were obtained, the crystal structures of which were nearly the same as each other regardless of the alpha-substituent (R1); dihedral angles between the two beta-diketiminate coordination planes are 62.5 +/- 1.2 degrees, and the Cu-N bond lengths are 1.959 +/- 0.008 A. The distorted tetrahedral structures are maintained in solution, but the spectroscopic features, especially gII values of the ESR spectra and the d-d bands of the absorption spectra, as well as the electrochemical behaviors of the complexes, are significantly affected by the electronic nature of R1. The ligands with R3=Mes and Dep, on the other hand, gave di(mu-hydroxo)dicopper(II) complexes, and their crystal structures as well as spectroscopic and electrochemical features have also been explored. Furthermore, the ligand with the more sterically encumbered aromatic substituent (Dipp) provided a mononuclear four-coordinate square planar copper(II) complex supported by one beta-diketiminate ligand and one didentate acetate ion. Thus, the beta-diketiminate ligands with a variety of substituents (R1 and R3) have been explored to provide coordinatively unsaturated (four-coordinate) mononuclear and dinuclear copper(II) complexes with significantly different coordination geometry and properties.  相似文献   

8.
Four mononuclear Cu(I) complexes of 2-(2'-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh(3), bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh(3))(2)][BF(4)] (1), [Cu(pbb)(dppe)][BF(4)] (2), [Cu(pbb)(DPEphos)][BF(4)] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P-Cu-P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV-vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 micros). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2'-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes.  相似文献   

9.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

10.
The goal of this study was to establish the relationship between the 19F NMR line broadening and the varying distance between the 19F nucleus and copper(II) ion, with the aim of gathering data that can be used to interpret 19F NMR spectra of subsequent fluorine-labeled, copper-binding proteins. Fluorinated alkyl and aryl copper(II) carboxylates were synthesized from fluorinated carboxylic acids and Cu(OH)2. The copper(II) carboxylates were characterized using 19F NMR, IR, and single crystal X-ray diffraction. In the alkyl carboxylate compounds, the line broadening and chemical shift lessened with increased distance between the fluorine atom and the copper ions; however, in the aryl carboxylate derivatives, increased distance was not a factor in the amount of line broadening or change in chemical shift between the acid and metal salt. The compound, bis(3-(trifluoromethyl)butyrate) copper(II) (5) was found to possess the optimum combination of decreased line broadening and increased chemical shift sensitivity in 19F NMR. The crystal structures obtained for compounds 1, 2, 4, and 6 were analogous to previous copper(II) carboxylate complexes, though it is noted that compound 6, bis(5,5,5-trifluoropentanoate) copper(II) assumes a tetrameric structure lacking apical ligands, and thus enables the formation of an extended network of near-neighbor copper(II) ions.  相似文献   

11.
Summary A series of oxorhenium(V) complexes of general formula ReOCl3[(4-RC6H4)3P]2 was prepared and converted into rhenium(III) complexes of general formula ReCl3(MeCN)[(4-RC6H4)3P]2. Replacement of the coordinated acetonitrile in the complex ReCl3(MeCN)(Ph3P)2 by a series ofpara-substituted benzonitriles yielded complexes of general formula ReCl3(4-RC6H4CN)(Ph3P)2. The voltammetric behavior of these oxorhenium(V) and rhenium(III) complexes was characterized. For all three classes of compounds, reversible one-electron oxidations and reductions were observed. The redox potentials were correlated with the pKa of the substituted phosphine and with the Hammett-Taft constants for both the phosphine and benzonitrile substituent.  相似文献   

12.
13.
Synthesis of the perfluorinated 1,3,5-triazapentadiene [N{(CF(3))C(C(6)F(5))N}(2)]H and the use of its conjugate base as a supporting ligand for the isolation of silver(i) and copper(i) complexes are reported. Some of the related chemistry involving [N{(C(3)F(7))C(C(6)F(5))N}(2)](-) (that has bulkier -C(3)F(7) groups on the 1,3,5-triazapentadienyl ligand backbone) is also presented. X-ray crystallographic data show a wide variety of structures ranging from intermolecular, hydrogen-bonded chain structure for [N{(CF(3))C(C(6)F(5))N}(2)]H with a twisted W-shaped N(3)C(2) core, monomeric [N{(CF(3))C(C(6)F(5))N}(2)]Ag(CN(t)Bu)(2) and [N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(CN(t)Bu)(2) where the κ(1)-bonded triazapentadienyl ligand bonding to the metal fragment via the central nitrogen atom, monomeric [N{(CF(3))C(C(6)F(5))N}(2)]Ag(PPh(3))(2) and [N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(PPh(3))(2) that feature κ(1)-bonded triazapentadienyl ligand bonding to the metal fragment via one of the terminal nitrogen atoms, to that of the monomeric [N{(CF(3))C(C(6)F(5))N}(2)]Cu(CN(t)Bu)(2) containing a κ(2)-bonded triazapentadienyl ligand and a U-shaped NCNCN ligand backbone. The isocyanide adducts show relatively high ν(CN) values in the IR spectra.  相似文献   

14.
The aza-Wittig reaction between Ar(f)()-N=PPh(3) [Ar(f)() = 3,5-(CF(3))(2)C(6)H(3)] and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione affords a new, highly fluorinated beta-diketimine, 1. Metalation by mesitylcopper(I) in benzene gives rise to the Cu(I) beta-diketiminate as its eta(2)-benzene adduct, 2a. Copper(I) carbonyl complexes of 1, and of three less-fluorinated analogues, have been generated in situ and compared by IR spectroscopy; the two backbone CF(3) groups exert a stronger electronic influence than the four N-aryl CF(3) groups. Dinuclear adduct 2b reacts readily with O(2), leading to ortho-hydroxylation of a ligand N-Ar(f)() group.  相似文献   

15.
[Cu(H2O)(PzTz)2](NO3)2 (1), [Cu(μ-NO3)(NO3)(DMPzTz)] n (2), and [{Cu(NO3)(DPhPzTz)}2(μ-NO3)2] (3) [PzTz?=?2-(1-pyrazolyl)-1,3-thiazine, DMPzTz?=?2-(3,5-dimethyl-1-pyrazolyl)-1,3-thiazine, DPhPzTz?=?2-(3,5-diphenyl-1-pyrazolyl)-1,3-thiazine] have been prepared and characterized by elemental analysis, electronic spectroscopy, IR spectroscopy, electron paramagnetic resonance spectroscopy, magnetic susceptibility measurements, and single-crystal X-ray diffraction. Influence of ligand size on coordination to Cu(II) has been analyzed. The three complexes are five-coordinate and the coordination geometry can be described as a distorted trigonal bipyramid for 1 or a distorted square pyramid for 2 and 3. As a consequence of the strain induced by the ligands, 1 is a monomeric complex cation whereas 2 is a polymer and 3 is a dimer.  相似文献   

16.
A series of Cu(I) and Cu(II) complexes containing substituted ketiminate ligands was synthesized. Reaction of CuCl2 with 2 equiv. of Li[OC(Me)CHC(Me)N(Ar)] in toluene generated dark green solid of Cu[OC(Me)CHC(Me)N(Ar)]2 (1). Similarly, Cu(I) complex, {Cu[OC(Me)CHC(Me)N(Ar)]Li[OC(Me)CHC(Me)N(Ar)]}2 (2) was synthesized by reacting 2 equiv. of Li[OC(Me)CHC(Me)N(Ar)] with CuCl in toluene at room temperature for 12 h. While the reaction of CuCl with Li[OC(Me)CHC(Me)N(Ar)] in the presence of triphenylphosphine in THF solution at room temperature, a three-coordinated Cu[OC(Me)CHC(Me)N(Ar)](PPh3) (3) can be isolated in high yield. Replacing the PPh3 of 3 with N-heterocarbene (NHC) generates Cu[OC(Me)CHC(Me)N(Ar)](NHC) (4) in low yield. Complexes 2, 3, and 4 were characterized by 1H and 13C NMR spectroscopies and all molecules were structurally characterized by X-ray diffractometry. Two coordination modes of ketiminate ligands were found in the molecular structure of 2, one of which is copper-coordinated terminal ketiminates and the other is lithium-copper-coordinated bridging ketiminates.  相似文献   

17.
The synthesis of diphenylarylphosphane and 1,2-bis(diarylphosphanyl)ethane ligands, where the aryl group is -C6H4CH2CH2SiMe2CH2OC6H4-3-NMe2, their palladium(II) complexes, and their corresponding ammonium-quaternized derivatives is described. These new phosphanes were devised as models of potentially water-soluble dendritic carbosilane ligands, although the solubility brought about by the quaternized N-trimethylanilinium groups is scarce. The palladium(II) complexes have been fully characterized by 1H, 13C, and 31P NMR spectroscopy and mass spectrometry, and have been tested in the Hiyama cross-coupling reaction between tri(methoxy)phenylsilane and 3-bromopyridine in aqueous sodium hydroxide solution.  相似文献   

18.
Tellurium-bearing acyclic Schiff bases, 2,6-bis({N-[2-(phenyltellurato)ethyl]}benzimidoyl)-4-methylphenol (HL3 ) and 2,6-bis({N-[3-(phenyltellurato)propyl]}benzimidoyl)-4-methylphenol (HL4 ) of the Te2N2O type have been prepared by condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate phenyltellurato(alkyl)amine. HL3 and HL4 have been characterized by mass spectrometry, IR, electronic and 1H-NMR spectroscopies and cyclic voltammetry. Their reactions with Cu(II) acetate monohydrate in a 2?:?1 molar ratio in methanol yield [(C6H2(O)(Me){(C6H5)C=N(CH2)nTe(C6H5)}{(C6H5)C=O})2Cu] (3 (n?=?2), 4 (n?=?3)) as suggested by analytical and spectroscopic data and single crystal X-ray crystallography of 3. In both complexes, one arm of the ligand undergoes hydrolysis at the C=N position and two molecules of the partially hydrolyzed ligand coordinate to Cu(II) through imido nitrogen and the phenolic oxygen. The telluriums do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. Electrochemical studies of 3 and 4 indicate quasi-reversible reductions (E°′?=??1.113?V (3) and ?1.149?V (4)) corresponding to the reduction of copper(II) to copper(I). The interactions of 3 and 4 with calf thymus DNA, investigated by spectrophotometry and cyclic voltammetry, indicate that 3 and 4 bind to DNA via intercalation, and the binding affinity of 3 is lower than that of its selenium analog.  相似文献   

19.
The rhodium(I) complexes (Ph3P)2Rh[Me2NC(S)NC(S)NMe2], (Ph3P)2Rh[SC(S)NMe2] and (Ph3P)2Rh[PhNC(S)NMe2] react with O2 to give 1/1 dioxygen adducts. In solution, trans-(Ph3P)2Rh(O2)[Me2NC(S)NC(S)NMe2], cis- and trans-(Ph3P)2Rh(O2)[SC(S)NMe2] and cis- and trans-(Ph3P)2Rh(O2)[PhNC(S)NMe2] are observed. For (Ph3P)2Rh(O2)[PhNC(S)NMe2], there is a solvent effect on the initial cistrans ratio and the rate of O=PPh3 formation. In C6H6, O=PPh3 formation from (Ph3P)2Rh(O2)[PhNC(S)NMe2] is inhibited by additional PPh3.The reaction of (Ph3P)2Rh[Ph2PC(S)NPh] with O2 in the presence of additional PPh3 gives O=PPh3 and cis-(Ph3P)2Rh(O2)[Ph2P(O)C(S)NPh] as the only products. The same complex also can be prepared from (Ph3P)2Rh[Ph2P(O)C(S)NPh] and O2.Only (Ph3P)2Rh[PhNC(S)NMe2] reacts with H2 at room temperature to give (Ph3P)2RhH2[PhNC(S)NMe2], which is a catalyst for cyclohexene hydrogenation.  相似文献   

20.
Two dicopper(I) complexes containing tertiary N-methylated hexaaza ligands which impose different steric constraints to the Cu ions have been synthesized, and their reactivity toward O2 has been compared with a mononuclear related system, highlighting the importance of cooperative effects between the metal centers in O2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号