首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The reactivity of [HO-(tpa)Fe(V)=O] (TPA=tris(2-pyridylmethyl)amine), derived from O-O bond heterolysis of its [H(2)O-(tpa)Fe(III)-OOH] precursor, was explored by means of hybrid density functional theory. The mechanism for alkane hydroxylation by the high-valent iron-oxo species invoked as an intermediate in Fe(tpa)/H(2)O(2) catalysis was investigated. Hydroxylation of methane and propane by HO-Fe(V)=O was studied by following the rebound mechanism associated with the heme center of cytochrome P450, and it is demonstrated that this species is capable of stereospecific alkane hydroxylation. The mechanism proposed for alkane hydroxylation by HO-Fe(V)=O accounts for the experimentally observed incorporation of solvent water into the products. An investigation of the possible hydroxylation of acetonitrile (i.e., the solvent used in the experiments) shows that the activation energy for hydrogen-atom abstraction by HO-Fe(V)=O is rather high and, in fact, rather similar to that of methane, despite the similarity of the H-CH(2)CN bond strength to that of the secondary C-H bond in propane. This result indicates that the kinetics of hydrogen-atom abstraction are strongly affected by the cyano group and rationalizes the lack of experimental evidence for solvent hydroxylation in competition with that of substrates such as cyclohexane.  相似文献   

2.
Heme oxo-iron complexes are powerful oxygenation catalysts of environmentally benign hydroxylation processes. We have performed density functional theoretic calculations on a model system, that is, an oxo-iron-porphyrin (Por) complex [(Fe=O)Cl(Por)], and studied its reactivity toward a realistic substrate, namely, ethylbenzene. The calculations showed that the dominant reaction process in the gas phase is benzyl hydroxylation leading to 1-phenylethanol, with an energetic barrier of 9.1 kcal mol(-1), while the competing para-phenyl hydroxylation has a barrier 3.0 kcal mol(-1) higher in energy. This benzyl hydroxylation barrier is the lowest C-H hydroxylation barrier we have obtained so far for oxo-iron-porphyrin complexes. Due to electronic differences between the intermediates in the phenyl and benzyl hydroxylation processes, the phenyl hydroxylation process is considerably stabilised over the benzyl hydroxylation mechanism in environments with a large dielectric constant. In addition, we calculated kinetic isotope effects of the substitution of one or more hydrogen atoms of ethylbenzene by deuterium atoms and studied its effect on the reaction barriers. Thus, in a medium with a large dielectric constant, a regioselectivity change occurs between [H(10)]ethylbenzene and [D(10)]ethylbenzene whereby the deuterated species gives phenol products whereas the hydrogenated species gives mainly 1-phenylethanol products. This remarkable metabolic switching was analysed and found to occur due to 1) differences in strength between a C-H versus a C-D bond and 2) stabilisation of cationic intermediates in a medium with a large dielectric constant. We have compared our calculations with experimental work on synthetic oxo-iron-porphyrin catalysts as well as with enzyme-reactivity studies.  相似文献   

3.
Cytochrome P450 enzymes are highly versatile biological catalysts in our body that react with a broad range of substrates. Key functions in the liver include the metabolism of drugs and xenobiotics. One particular metabolic pathway that is poorly understood relates to the P450 activation of aliphatic groups leading to either hydroxylation or desaturation pathways. A DFT and QM/MM study has been carried out on the factors that determine the regioselectivity of aliphatic hydroxylation over desaturation of compounds by P450 isozymes. The calculations establish multistate reactivity patterns, whereby the product distributions differ on each of the spin‐state surfaces; hence spin‐selective product formation was found. The electronic and thermochemical factors that determine the bifurcation pathways were analysed and a model that predicts the regioselectivity of aliphatic hydroxylation over desaturation pathways was established from valence bond and molecular orbital theories. Thus, the difference in energy of the O?H versus the O?C bond formed and the π‐conjugation energy determines the degree of desaturation products. In addition, environmental effects of the substrate binding pocket that affect the regioselectivities were identified. These studies imply that bioengineering P450 isozymes for desaturation reactions will have to include modifications in the substrate binding pocket to restrict the hydroxylation rebound reaction.  相似文献   

4.
The stereoselective copper-mediated hydroxylation of intramolecular C−H bonds from tridentate ligands is reinvestigated using DFT calculations. The computational study aims at deciphering the mechanism of C−H hydroxylation obtained after reaction of Cu(I) precursors with dioxygen, using ligands bearing either activated ( L1 ) or non-activated ( L2 ) C−H bonds. Configurational analysis allows rationalization of the experimentally observed regio- and stereoselectivity. The computed mechanism involves the formation of a side-on peroxide species ( P ) in equilibrium with the key intermediate bis-(μ-oxo) isomer ( O ) responsible for the C−H activation step. The P/O equilibrium yields the same activation barrier for the two complexes. However, the main difference between the two model complexes is observed during the C−H activation step, where the complex bearing the non-activated C−H bonds yields a higher energy barrier, accounting for the experimental lack of reactivity of this complex under those conditions.  相似文献   

5.
A series of catecholatoiron(III) complexes, [Fe(III)L(4Cl-cat)]BPh4 (L = (4-MeO)2TPA (1), TPA (2), (4-Cl)2TPA (3), (4-NO2)TPA (4), (4-NO2)2TPA (5); TPA = tris(pyridin-2-ylmethyl)amine; 4Cl-cat = 4-chlorocatecholate), have been characterized by magnetic susceptibility measurements and EPR, 1H NMR, and UV-vis-NIR spectroscopies to clarify the correlation of the spin delocalization on the catecholate ligand with the O2 reactivity as well as the spin-state dependence of the O2 reactivity. EPR spectra in frozen CH3CN at 123 K clearly showed that introduction of electron-withdrawing groups effectively shifts the spin equilibrium from a high-spin to a low-spin state. The effective magnetic moments determined by the Evans method in a CH3CN solution showed that 5 contains 36% of low-spin species at 243 K, while 1-4 are predominantly in a high-spin state. Evaluation of spin delocalization on the 4Cl-cat ligand by paramagnetic 1H NMR shifts revealed that the semiquinonatoiron(II) character is more significant in the low-spin species than in the high-spin species. The logarithm of the reaction rate constant is linearly correlated with the energy gap between the catecholatoiron(III) and semiquinonatoiron(II) states for the high-spin complexes 1-3, although complexes 4 and 5 deviate negatively from linearity. The lower reactivity of the low-spin complex, despite its higher spin density on the catecholate ligand compared with the high-spin analogues, suggests the involvement of the iron(III) center, rather than the catecholate ligand, in the reaction with O2.  相似文献   

6.
The modeling of reactivity in an ionic liquid is examined with DFT and DFT/MM calculations on the S(N)2 intramolecular rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2,5-diphenyl-1,2,3-triazole induced by amines. Experimental research has shown that the reaction occurs in 1-butyl-3-methylimidazolium tetrafluoroborate, and in conventional organic solvents such as acetonitrile with comparable rates. The structure for the reactants, transition states and products for the rate-determining step are optimized, and the energy barrier is computed in three different environments: gas phase, water solvent, and ionic liquid. The results are encouraging in describing the energy barrier in the ionic liquid. A simple model is formulated to explain the effect of the solvent in this particular process, and a procedure to study theoretically the reactivity in an ionic liquid is proposed.  相似文献   

7.
A manganese(III)-substituted polyoxometalate, [alpha2-P2MnIII(L)W17O61]7- (P2W17MnIII), was studied as an oxidation catalyst using iodopentafluorobenzene bis(tifluoroacetate) (F5PhI(TFAc)2) as a monooxygen donor. Pink P2W17MnIII turns green upon addition of F5PhI(TFAc)2. The 19F NMR spectrum of F5PhI(TFAc)2 with excess P2W17MnIII at -50 degrees C showed the formation of an intermediate attributed to P2W17MnIII-F5PhI(TFAc)2 that disappeared upon warming. The 31P NMR spectra of P2W17MnIII with excess F5PhI(TFAc)2 at -50 and -20 degrees C showed a pair of narrow peaks attributed to a diamagnetic, singlet manganese(V)-oxo species, P2W17MnV=O. An additional broad peak at -10.6 ppm was attributed to both the P2W17MnIII-F5PhI(TFAc)2 complex and a paramagnetic, triplet manganese(V)-oxo species. The electronic structure and reactivity of P2W17MnV=O were modeled by DFT calculations using the analogous Keggin compound, [PMnV=OW11O39]4-. Calculations with a pure functional, UBLYP, showed singlet and triplet ground states of similar energy. Further calculations using both the UBLYP and UB3LYP functionals for epoxidation and hydroxylation of propene showed lowest lying triplet transition states for both transformations, while singlet and quintet transition states were of higher energy. The calculations especially after corrections for the solvent effect indicate that [PMnV=OW11O39]4- should be highly reactive, even more reactive than analogous MnV=O porphyrin species. Kinetic measurements of the reaction of P2W17MnV=O with 1-octene indicated, however, that P2W17MnV=O was less reactive than a MnV=O porphyrin. The experimental enthalpy of activation confirmed that the energy barrier for epoxidation is low, but the highly negative entropy of activation leads to a high free energy of activation. This result originates in our view from the strong solvation of the highly charged polyoxometalate by the polar solvent used and adventitious water. The higher negative charge of the polyoxometalate in the transition versus ground state leads to electrostriction of the solvent molecules and to a loss of degrees of freedom, resulting in a highly negative entropy of activation and slower reactions.  相似文献   

8.
Detailed mechanistic studies on the ligand hydroxylation reaction mediated by a copper bis(imine) complex are presented. Starting from a structural analysis of the CuI complex and the CuII product with a hydroxylated ligand, the optical absorption and vibrational spectra of starting material and product are analyzed. Kinetic analysis of the ligand hydroxylation reaction shows that O2 binding is the rate-limiting step. The reaction proceeds much faster in methanol than in acetonitrile. Moreover, an inverse kinetic isotope effect (KIE) is evidenced for the reaction in acetonitrile, which is attributed to a sterically congested transition state leading to the peroxo adduct. In methanol, however, no KIE is observed. A DFT analysis of the oxygenation reaction mediated by the micro-eta2:eta2 peroxo core demonstrates that the major barrier after O2 binding corresponds to electrophilic attack on the arene ring. The relevant orbital interaction occurs between the sigma* orbital of the Cu2O2 unit and the HOMO of the ligand. On the basis of the activation energy for the rate-limiting step (18.3 kcal mol(-1)) this reaction is thermally allowed, in agreement with the experimental observation. The calculations also predict the presence of a stable dienone intermediate which, however, escaped experimental detection so far. Reasons for these findings are considered. The implications of the results for the mechanism of tyrosinase are discussed.  相似文献   

9.
The spectroscopic properties, electronic structure, and reactivity of the low-spin Fe(III)-hydroperoxo complex [Fe(N4Py)(OOH)](2+) (1, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) are investigated in comparison to those of activated bleomycin (ABLM). Complex 1 is characterized by Raman features at 632 (Fe-O stretch) and 790 cm(-1) (O-O stretch), corresponding to a strong Fe-O bond (force constant 3.62 mdyn/A) and a weak O-O bond (3.05 mdyn/A). The UV-vis spectrum of 1 shows a broad absorption band around 550 nm that is assigned to a charge-transfer transition from the hydroperoxo to a t(2g) d orbital of Fe(III) using resonance Raman and MCD spectroscopies and density functional (DFT) calculations. Compared to low-spin [Fe(TPA)(OH(x))(OO(t)Bu)](x+)(TPA = tris(2-pyridylmethyl)amine, x = 1 or 2), an overall similar Fe-OOR bonding results for low-spin Fe(III)-alkylperoxo and -hydroperoxo species. Correspondingly, both systems show similar reactivities and undergo homolytic cleavage of the O-O bond. From the DFT calculations, this reaction is more endothermic for 1 due to the reduced stabilization of the .OH radical compared to .O(t)Bu and the absence of the hydroxo ligand that helps to stabilize the resulting Fe(IV)=O species. In contrast, ABLM has a somewhat different electronic structure where no pi donor bond between the hydroperoxo ligand and iron(III) is present [Neese, F.; Zaleski, J. M.; Loeb-Zaleski, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11703]. Possible reaction pathways for ABLM are discussed in relation to known experimental results.  相似文献   

10.
To estimate the importance of relativistic effects on the reaction mechanisms between Ru and CO2, the potential energy surfaces have been performed in the triplet and quintet electronic states using quasi-relativistic (Pauli), zero-order regularly approximated (ZORA), and nonrelativistic (NR) density functional theory (DFT) at the PW91/TZP level. The results demonstrate that there are two rival reaction mechanisms: one is an addition mechanism and the other is an insertion mechanism in the triplet state. The only mechanism in the quintet state is the insertion mechanism. The most favored reaction mechanism in Ru + CO2 is that the Ru atom in its ground state first attacks the CO bond of CO2, forming q-Ru(CO)O (5A') with the insertion mechanism, and then undergoes an intersystem crossing to t-Ru(CO)O (3A'). Then it crosses t-TS3 to produce t-ORuCO molecule. The relativistic effects are important for reactivity of the second-row transition metal to CO2. In the key step of t-Ru(CO)O via t-TS3 to t-ORuCO, relativistic effects reduce the barrier energy by 10.3 kcal/mol, which is nearly half the nonrelativistic barrier energy.  相似文献   

11.
A Rosa  G Ricciardi 《Inorganic chemistry》2012,51(18):9833-9845
The methane hydroxylation reaction by a Compound II (Cpd II) mimic PorFe(IV)=O and its hydrosulfide-ligated derivative [Por(SH)Fe(IV)=O](-) is investigated by density functional theory (DFT) calculations on the ground triplet and excited quintet spin-state surfaces. On each spin surface both the σ- and π-channels are explored. H-abstraction is invariably the rate-determining step. In the case of PorFe(IV)=O the H-abstraction reaction can proceed either through the classic π-channel or through the nonclassical σ-channel on the triplet surface, but only through the classic σ-mechanism on the quintet surface. The barrier on the quintet σ-pathway is much lower than on the triplet channels so the quintet surface cuts through the triplet surfaces and a two state reactivity (TSR) mechanism with crossover from the triplet to the quintet surface becomes a plausible scenario for C-H bond activation by PorFe(IV)=O. In the case of the hydrosulfide-ligated complex the H-abstraction follows a π-mechanism on the triplet surface: the σ* is too high in energy to make a σ-attack of the substrate favorable. The σ- and π-channels are both feasible on the quintet surface. As the quintet surface lies above the triplet surface in the entrance channel of the oxidative process and is highly destabilized on both the σ- and π-pathways, the reaction can only proceed on the triplet surface. Insights into the electron transfer process accompanying the H-abstraction reaction are achieved through a detailed electronic structure analysis of the transition state species and the reactant complexes en route to the transition state. It is found that the electron transfer from the substrate σ(CH) into the acceptor orbital of the catalyst, the Fe-O σ* or π*, occurs through a rather complex mechanism that is initiated by a two-orbital four-electron interaction between the σ(CH) and the low-lying, oxygen-rich Fe-O σ-bonding and/or Fe-O π-bonding orbitals of the catalyst.  相似文献   

12.
We study the generation of a dinuclear Fe(IV)oxo species, [EDTAH·FeO·OFe·EDTAH](2-), in aqueous solution at room temperature using Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD). This species has been postulated as an intermediate in the multi-step mechanism of autoxidation of Fe(II) to Fe(III) in the presence of atmospheric O(2) and EDTA ligand in water. We examine the formation of [EDTAH·FeO·OFe·EDTAH](2-) by direct cleavage of O(2), and the effects of solvation on the spin state and O-O cleavage barrier. We also study the reactivity of the resulting dinuclear Fe(IV)oxo system in CH(4) hydroxylation, and its tendency to decompose to mononuclear Fe(IV)oxo species. The presence of the solvent is shown to play a crucial role, determining important changes in all these processes compared to the gas phase. We show that, in water solution, [EDTAH·FeO·OFe·EDTAH](2-) (as well as its precursor [EDTAH·Fe·O(2)·Fe·EDTAH](2-)) exists as stable species in a S = 4 ground spin state when hydrogen-bonded to a single water molecule. Its structure comprises two facing Fe(IV)oxo groups, in an arrangement similar to the one evinced for the active centre of intermediate Q of soluble Methane Monooxygenase (sMMO). The inclusion of the water molecule in the complex decreases the overall symmetry of the system, and brings about important changes in the energy and spatial distribution of orbitals of the Fe(IV)oxo groups relative to the gas phase. In particular, the virtual 3σ* orbital of one of the Fe(IV)oxo groups experiences much reduced repulsive orbital interactions from ligand orbitals, and its consequent stabilisation dramatically enhances the electrophilic character of the complex, compared to the symmetrical non-hydrated species, and its ability to act as an acceptor of a H atom from the CH(4) substrate. The computed free energy barrier for H abstraction is 28.2 kJ mol(-1) (at the BLYP level of DFT), considerably below the gas phase value for monomeric [FeO·EDTAH](-), and much below the solution value for the prototype hydrated ferryl ion [FeO(H(2)O)(5)](2+).  相似文献   

13.
Density functional theory studies on the nature of the cis effect and cis influence of ligands on oxoiron nonheme complexes have been performed. A detailed analysis of the electronic and oxidizing properties of [Fe(IV)O(TPA)L](+) with L = F(-), Cl(-), and Br(-) and TPA = tris-(2-pyridylmethyl)amine are presented and compared with [Fe(IV)O(TPA)NCCH(3)](2+). The calculations show that the electronic cis effect is determined by favorable orbital overlap between first-row elements with the metal, which are missing between the metal and second- and third-row elements. As a consequence, the metal 3d block is split into a one-below-two set of orbitals with L = Cl(-) and Br(-), and the HOMO/LUMO energy gap is widened with respect to the system with L = F(-). However, this larger HOMO/LUMO gap does not lead to large differences in electron affinities of the complexes. Moreover, a quantum mechanical analysis of the binding of the ligand shows that it is built up from a large electric field effect of the ligand on the oxoiron species and a much smaller quantum mechanical effect due to orbital overlap. These contributions are of similar strength for the three tested halogen cis ligands and result in similar reactivity patterns with substrates. The calculations show that [Fe(IV)O(TPA)L](+) with L = F(-), Cl(-), and Br(-) have closely lying triplet and quintet spin states, but only the quintet spin state is reactive with substrates. Therefore, the efficiency of the oxidant will be determined by the triplet-quintet spin state crossing of the reaction. The reaction of styrene with a doubly charged reactant, that is, [Fe(V)O(TPA)L](2+) with L = F(-), Cl(-), and Br(-) or [Fe(V)O(TPA)NCCH(3)](3+), leads to an initial electron transfer from the substrate to the metal followed by a highly exothermic epoxidation mechanism. These reactivity differences are mainly determined by the overall charge of the system rather than the nature of the cis ligand.  相似文献   

14.
Reactions occurring within gas phase fluorobenenze-ammonia heterocluster cations (FC(6)H(5)-(NH(3))(n=1-4)) have been studied through the use of a triple quadrupole mass spectrometer as well as employing density functional theory (DFT). Collision induced dissociation (CID) experiments were conducted in which mass selected cluster ions are accelerated into a cell containing argon gas and the resulting products then subsequently mass analyzed. Two dominate reaction channels are observed. The first is simple evaporative loss of neutral ammonia from the cluster ion. The second involves a substitution reaction occurring within the cluster ion to form the aniline cation, C(6)H(5)NH(2)(+), where the reactivity was found to vary as a function of cluster size. DFT calculations have been performed to both help analyze the structure and the reactivity of these cluster ions. Pronounced differences in activation energies were found that provide an explanation for the observed variation of reactivity as a function of cluster size. An ad hoc model based upon the Arrhenius equation was developed to fit both the experimental collision energy dependence of the reaction and the observed lowering of the reaction barrier to aniline formation as a function of cluster size.  相似文献   

15.
Density functional theory using the B3LYP hybrid functional has been employed to investigate the reactivity of Fe(TPA) complexes (TPA = tris(2-pyridylmethyl)amine), which are known to catalyze stereospecific hydrocarbon oxidation when H(2)O(2) is used as oxidant. The reaction pathway leading to O-O bond heterolysis in the active catalytic species Fe(III)(TPA)-OOH has been explored, and it is shown that a high-valent iron-oxo intermediate is formed, where an Fe(V) oxidation state is attained, in agreement with previous suggestions based on experiments. In contrast to the analogous intermediate [(Por.)Fe(IV)=O](+1) in P450, the TPA ligand is not oxidized, and the electrons are extracted almost exclusively from the mononuclear iron center. The corresponding homolytic O-O bond cleavage, yielding the two oxidants Fe(IV)=O and the OH. radical, has also been considered, and it is shown that this pathway is inaccessible in the hydrocarbon oxidation reaction with Fe(TPA) and hydrogen peroxide. Investigations have also been performed for the O-O cleavage in the Fe(III)(TPA)-alkylperoxide species. In this case, the barrier for O-O homolysis is found to be slightly lower, leading to loss of stereospecificity and supporting the experimental conclusion that this is the preferred pathway for alkylperoxide oxidants. The difference between hydroperoxide and alkylperoxide as oxidant derives from the higher O-O bond strength for hydrogen peroxide (by 8.0 kcal/mol).  相似文献   

16.
Comprehensive density functional theory computations on substrate hydroxylation by a range of nonheme iron(iv)-oxo model systems [Fe(IV)(O)(NH(3))(4)L](+) (where L = CF(3)CO(2)(-), F(-), Cl(-), N(3)(-), NCS(-), NC(-), OH(-)) have been investigated to establish the effects of axial ligands with different degrees of electron donor ability on the reactivity of the distinct reaction channels. The results show that the electron-pushing capability of the axial ligand can exert a considerable influence on the different reaction channels. The σ-pathway reactivity decreases as the electron-donating ability of the axial ligand strengthens, while the π-pathway reactivity follows an opposite trend. Moreover, the apparently antielectrophilic trend observed for the energy gap between the triplet π- and quintet σ-channel (ΔG(T-Q)) stems from the fact that the reaction reactivity can be fine-controlled by the interplay between the exchange-stabilization benefiting from the (5)TS(H) relative to the (3)TS(H) by most nonheme enzymes and the destabilization effect of the orbital by the anionic axial ligand. When the former counteracts the latter, the quintet σ-pathway will be more effective than the other alternatives. Nevertheless, when the dramatic destabilization effect of the orbital by a strong binding axial σ-donor ligand like OH(-) counteracts but does not override the exchange-stabilization, the barrier in the quintet σ-pathway will remain identical to the triplet π-pathway barrier. Indeed, the axial ligand does not change the intrinsic reaction mechanism in its respective pathway; however, it can affect the energy barriers of different reaction channels for C-H activation. As such, the tuning of the reactivity of the different reaction channels can be realised by increasing/decreasing the electron pushing ability.  相似文献   

17.
Phenol hydroxylation is an industrially important reaction, whose main products are catechol and hy-droquinone being diverse applications which are im-portant intermediates for perfumes, drugs, and phar-maceuticals and so on[1]. The processes using H2O2 a…  相似文献   

18.
Debate continues over which active species plays the role of oxidative agent during the Fenton reaction-the HO˙ radical or oxo iron [Fe(IV)O](2+). In this context, the present study investigates the oxidation of p-chlorophenol by [Fe(IV)O(H(2)O)(5)](2+) using DFT calculations, within gas-phase and micro-solvated models, in order to explore the possible role of oxo iron as a reactant. The results show that the chlorine atom substitution of p-chlorophenol by oxo iron is a highly stabilising step (ΔH = -83 kcal mol(-1)) with a free energy barrier of 5.8 kcal mol(-1) in the micro-solvated model. This illustrates the high oxidising power of the [Fe(IV)O(H(2)O)(5)](2+) complex. On the other hand, the breaking of the Fe-O bond, leading to the formation of hydroquinone, is observed to be the rate-determining step of the reaction. The rather large free energy barrier corresponding to this bond cleavage amounts to 10.2 and 9.3 kcal mol(-1) in the gas-phase and micro-solvated models, respectively. Elsewhere, the lifetime of the HO˙ radical has previously been shown to be extremely small. These facts, combined with observations of oxo iron under certain experimental conditions, suggest that oxo iron is a highly plausible oxidative species of the reaction. In addition, a trigonal bipyramidal iron complex, coordinated either by hydroxyl groups and/or by water molecules, has been found in all described mechanisms. This structure appears to be a stable intermediate; and to our knowledge, it has not been characterised by previous studies.  相似文献   

19.
The chemistry of oxygen, hydrogen, water, and other species containing both oxygen and hydrogen atoms on the anatase TiO2 (001) surface is investigated by DFT. The adsorption energy of atoms and radicals depends appreciably on the position and mode of adsorption, and on the coverage. Molecular hydrogen and oxygen interact weakly with the clean surface. However, H2O dissociates spontaneously to give two nonidentical hydroxyl groups, and this provides a model for hydroxylation of TiO2 surfaces by water. The mobility of the hydroxyl groups created by water splitting is initially impeded by a diffusion barrier close to 1 eV. The O2 adsorption energy increases significantly in the presence of H atoms. Hydroperoxy (OOH) formation is feasible if at least two H atoms are present in the direct vicinity of O2. In the adsorbed OOH, the O? O bond is considerably lengthened and thus weakened.  相似文献   

20.
Dissociative adsorption of molecular oxygen (O2) on aluminum (Al) clusters has attracted much interest in the field of surface science and catalysis, but theoretical predictions of the reactivity of this reaction in terms of barrier height is still challenging. In this regard, we systematically investigate the reactivity of O2 with Al clusters using density functional theory (DFT) and atom‐centered density matrix propagation (ADMP) simulations. We also calculate potential energy surfaces (PESs) of the reaction between O2 and Al clusters to estimate the barrier energy of this reaction. The M06‐2X functional gives the barrier energy in agreement with the one calculated by coupled cluster singles and doubles with perturbed triples (CCSD(T)) while the TPSSh functional significantly underestimates the barrier height. The ADMP simulation using the M06‐2X functional predicts the reactivity of O2 with the Al cluster in agreement with the experimental findings, that is, singlet O2 readily reacts with Al clusters but triplet O2 is less reactive. We found that the ability of a DFT functional to describe the charge transfer appropriately is critical for calculating the barrier energy and the reactivity of the reaction of O2 with Al clusters. The M06‐2X functional is relevant for investigating chemical reactions involving Al and O2. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号