首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethyl 3-[3H-1,5-benzodiazepin-2-yl]carbazates II were prepared in moderate yields from the title compounds and ethyl carbazate. The compounds II were easily transformed into 1H-s-triazolo[4,3-a][1,5]benzodiazepin-1-ones III via a one-step procedure. Reaction of triazolo-1,5-benzodiazepinones III with sodium hydride in methyl iodide gave a mixture of products from which were isolated two compounds IV and V . The structure of all products was confirmed by ir, 1H nmr and mass spectrometry.  相似文献   

2.
The 2,3-dihydro-1H-benz[f]indole-4,9-diones 3a–d , h were formed in a one-step reaction in 13–82% yield by an unprecedented [3 + 2] regioselective photoaddition of 2-amino-1,4-naphthoquinone ( 1 ) with various electronrich alkenes 2 (Scheme 1, Table). The [3 + 2] photoadducts derived from 1 with vinyl ethers and vinyl acetate gave 1H-benz[f]indole-4,9-diones 4e , f , i , in 33–72% yield, by spontaneous loss of the corresponding alcohol or AcOH from the resulting adducts; 4i has a kinamycin skeleton. The [3 + 2] photoaddition also took place on irradiation of the differently substituted amino-1,4-benzoquinones 6 , 7 , and 12 and excess alkenes 2 in benzene, giving 1H-indole-4,7-dione derivatives 13 and 14 (Scheme 3), 15a and 16 (Scheme 4), and 18 (Scheme 4), respectively. The initial products in these photoadditions were proved to be hydroquinones, the air oxidation of which yielded the heterocyclic quinones; 2,3-dihydro-2-methoxy-2-methyl-5-phenyl-1H-indole-1,4,7-triyl triacetate ( 19 ) was isolated after treatment of the crude photoaddition mixture obtained from 2-amino-5-phenyl-1,4-benzoquinone ( 7 ) and 2-methoxyprop-1-ene ( 2f ) with Ac2O and pyridine under N2. A pathway leading to the annelated hydroquinones involving ionic intermediates arising from an electron transfer in these photoadditions is proposed (Scheme 5).  相似文献   

3.
Polydimethylsiloxane (PDMS)–polyamide multiblock copolymers were successfully synthesized via diisocyanate route by two different procedures, i.e., the one-step and two-step methods, In the two-step method, α, ω-diisocyanate-terminated polyamide oligomers, which were prepared in situ from a mixture of isophthalic acid (IPA) and azelaic acid (AZA) with 4,4′-methylenedi (phenyl isocyanate) (MDI) in 1,3-dimethyl-2-imidazolidone (DMI) in the presence of 3-methyl-1-phenyl-2-phosopholene 1-oxide catalyst, were reacted with α, ω-bis (10-carboxydecyl) polydimethylsiloxane (PDMS-diacid) leading to the formation of multiblock copolymers. In the one-step method, the reaction components, MDI, IPA, AZA, and PDMS-diacid were reacted all together in DMI in the presence of the catalyst. These polymerizations gave multiblock copolymers having inherent viscosities in the range of 0.36–1.12 dL/g in N,N-dimethylacetamide (DMAc). These multiblock copolymers were soluble in amide-type solvents, and transparent (or translucent) and ductile films could be cast from the solutions in a mixture of DMAc and bis(2-ethoxyethyl) ether. The multiblock copolymers prepared by the two-step method had better-defined, microphase-separated morphology than those obtained by the one-step method. The mechanical properties of PDMS–polyamide multiblock copolymer films were found to be highly dependent on the PDMS content; the tensile strength and modulus of the films decreased with increasing the PDMS content.  相似文献   

4.
A one-step synthesis of 5-oxazolecarbamates 1–11 can be easily carried out starting from N-acetylated and benzoylated aminoacids such as Gly, Ala, Leu, Phe, and chlorosulfonyl carbamates, prepared in situ by addition of alcohols on chlorosulfonyl isocyanate (CSI). The structure of the compounds was confirmed by X-Ray crystallography. A subsequent exocyclic N-alkylation gave substituted 12–18 derivatives. Carbamate cleavage gave by spontaneous reopening substituted N-acylaminoamides, in excellent yields.  相似文献   

5.
An alternative synthesis of the lipophilic antifolate piritrexim ( 1 ) is outlined. Starting from ketone 2 , treatment with phosphorus oxychloride and dimethylformamide gave the β-chlorocrotonaldehydes 3E/Z , which were reacted with cyanoacetamide ( 6 ) in the presence of sodium hydride to yield a 3-cyano-2-pyridone derivative 7 . Chlorination of 7 with thionyl chloride and subsequent reaction with guanidine ( 9 ) gave rise to piritrexim ( 1 ). The reaction of β-chlorocrotonaldehydes 3E/Z , with 2,4,6-triaminopyrimidine ( 4 ) yielded iso-piritrexim ( 5 ).  相似文献   

6.
A simple synthesis of tubercidin ( 1 ), 7-deazaguanosine ( 2 ) and 2′-deoxy-7-deazaguanosine ( 14 ) has been accomplished using the sodium salt glycosylation procedure. Reaction of the sodium salt of 4-chloro- and 2-amino-4-chloro-pyrrolo[2,3-d]pyrimidine, 3 and 4 , respectively, with 1-chloro-2,3-0-isopropylidene-5-0-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 5 ) gave the corresponding protected nucleosides 6n and 7 with β-anomeric configuration. Deprotection of 6 provided 8 , which on heating with methanolic ammonia gave tubercidin ( 1 ) in excellent yield. Functional group transformation of 7 , followed by deisopropylidenation gave 2-aminotubercidin ( 10 ) and 2-amino-7-β-D-ribofuranosylpyrrolo[2,3-d]pyrimidine-4(3H)-thione ( 11 ). Treatment of 7 with 1N sodium methoxide followed by exposure to aqueous trifluoroacetic acid, and ether cleavage furnished 7-deazaguanosine ( 2 ). 2′-Deoxy-7-deazaguanosine ( 14 ) and 2′-deoxy-7-deaza-6-thioguano-sine ( 18 ) were also prepared by using similar sequence of reactions employing 4 and 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 15 ).  相似文献   

7.
The reaction of 3-acetyltropolone ( 1 ) with hydroxylamine under the acidic condition gave 3-methyl-8H-cyclohept[d]isoxazol-8-one ( 4 ) and its oxime ( 5 ), and under the neutral condition gave 4 and 3-acetyltropolone oxime ( 6 ). The reaction of 3-acetyl-2-methoxytropone ( 2a ) with hydroxylamine under the acidic condition gave 4, 5 , and 4-methyl-1H-2,3-benzoxazin-1-one ( 7 ), and under the neutral condition gave 4, 7 , 3-methyl-8H-cyclohept[c]isoxazol-8-one ( 8 ), and its oxime ( 9 ). The reaction of 7-acetyl-2-methoxytropone ( 2b ) with hydroxylamine under the acidic condition gave 4 and 5 , and under the neutral condition gave 5, 7 , and 9 .  相似文献   

8.
This paper describes the synthesis and chemical properties of some 2- and 3-substituted furo[2,3-b]pyridines. Reaction of ethyl 2-chloronicotinate 1 with sodium ethoxycarbonylmethoxide or 1-ethoxycarbonyl-1-ethoxide gave β-keto ester 2 or ketone 5 , respectively. Ketonic hydrolysis of 2 afforded ketone 3, from which furo[2,3-b]pyridine 4 was obtained by the method of Sliwa. While, 2-methyl derivative 7 was prepared from 5 by reduction, O-acetylation and the subsequent pyrolysis. Reaction of ketone 3 with methyllithium gave tertiary alcohol 8 which was O-acetylated and pyrolyzed to give 3-methyl derivative 9 . Formylation of 4 , via lithio intermediate, with DMF yielded 2-formyl derivative 10 , from which 7 , was obtained by Wolff-Kishner reduction. Dehydration of the oxime 11 of 10 gave 2-cyano derivative 12 , which was hydrolyzed to give 2-carboxylic acid 13 . Reaction of 3-bromo compound 14 with copper(I) cyanide gave 3-cyano derivative 15 . Alkaline hydrolysis of 15 afforded compound 16 and 17 , while acidic hydrolysis gave carboxamide 18 . Reduction of 15 with DIBAL-H afforded 3-formyl derivative 19 . Wolff-Kishner reduction of 19 gave no reduction product 9 but hydrazone 20 . Reduction of tosylhydrazone 21 with sodium borohydride in methanol afforded 3-methoxymethylfuro[2,3-b]pyridine 22 .  相似文献   

9.
3-Acetamidotropolone ( 1a ) reacted with bromine and fuming nitric acid to afford respectively 3-acetamido-7-bromo- ( 1b ) and -5,7-dibromotropolone ( 1c ) and 3-acetamido-5-nitrotropolone ( 1d ). Azo-coupling reaction of 1a gave 3-acetamido-5-(4-methylphenylazo)tropolone ( 1f ). Bromination of 1d and 1f gave 7-bromo-substituted compounds 1e and 1g , respectively. The compounds 1b-g were hydrolyzed to afford 3-aminotropolones 4b-g , which reacted with triethyl orthoformate to give the corresponding 8H-cyclohept[d]oxazol-8-ones 5b-g . Heating of 3-acetamidotropolones 1a-d with polyphosphoric acid gave 2-methyl-8H-cyclohept[d]oxazol-8-ones 6a-d .  相似文献   

10.
3-Cinnamoyltropolone ( 1 ) reacted with bromine to afford 7-bromo- ( 2 ), 5,7-dibromo-3-cinnamoyltropolone ( 3 ), and 6,8-dibromo-4,9-dihydrocyclohepta[b]pyrane-4,9-dione ( 4 ) according to amount of the reagent. Iodination and nitration of 1 gave respectively 7-iodo- ( 5 ) and 5-nitro-3-cinnamoyltropolone ( 6 ). Azo-coupling reactions gave 5-arylazo-3-cinnamoyltropolones 7a-f . Compounds 1, 2, 3 and 5 reacted with hydroxylamine to give 3-styryl-8H-cyclohept[d]isoxazol-8-ones 10-13 , while 6 and 7a gave 5-nitro-3-styryl-8H-cyclohept[d]-isoxazol-8-one oxime ( 14 ) and 2-cinnamoyl-7-methoxy-4-phenylazotropone ( 15 ), respectively. The reactions of 1,3 , and 5 with phenylhydrazine gave 3-styryl-1,8-dihydrocycloheptapyrazol-8-ones 16-19 .  相似文献   

11.
Octahydro-7-phenylpyrazino[2,1-b][3]benzazepine ( 1a ) was prepared from 1-methyl-3-phenylmethylpiperazine 5a by reaction with styrene oxide followed by sulfuric acid cyclization of the resulting alcohol 6a . The diastereomeric mixture 1a was further separated into the diastereomers 1a′ and 1a″ . Similarly 1-methyl-3-(3-chloro-4-methoxyphenyl)piperazine was reacted with styrene oxide to yield 6c which on cyclization with 1.5 equivalents of sulfuric acid in trifluoroacetic acid gave a 3:7 mixture of phenolic, 1d , and methoxy, 1c , octa-hydropyrazino[2,1-b][3]benzazepines. The reaction of the 2,5-piperazinedione 4c with sodium acetoxyborohydride gave a 49% yield of the 2-piperazinone 7 which was similarly carried on to the corresponding 1(2H)-oxohexahydropyrazino[2,1-b][3]benzazepine 9 .  相似文献   

12.
Several nucleoside derivatives of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione 1 and 2,4{1H,3H-pteridinedione 2 were prepared. Treating the appropriate silylated nucleobase with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofura-nose 3 in the presence of trimethylsilyl Inflate gave 4 and 8 which, upon debenzoylation, gave 5 and 9 , respectively. Treatment of 4 with phosphorus pentasulfide afforded the sulfur substituted compound 6 . Again, deprotection gave 7 . The arabinose derivatives were obtained by treating 1-O-acetyl-2,3,5-tri-O-benzoyl-D-arabinofuranose 10 with the silylated nucleobases to give 11 and 13 . Debenzoylation gave the free arabinonucleosides 12 and 14 respectively. The deoxy derivative 16 was prepared by the reaction of 1 with 1-chloro-3,5-di-O-acetyl-2-deoxy-D-ribofuranose 15 . Deacetylation of 16 with methanolic ammonia gave the α-anomer 17 .  相似文献   

13.
The condensation of 1H-indole-3-ethanamides, 1 , with 2,4-pentanediones, 2 , gave enamines 3 . Acid catalyzed ring closure of 3 gave 1-(1-substituted-2,3,4,9-tetrahydro- (2-oxopropyl) -1H-pyrido [3,4-b] indoles 4 . Subsequent N-acetylation yielded 5 which sequentially produced 2,3-disubstituted indoles 6 and 7 resulting from C? N bond cleavage after treatment with sodium alkoxide in ethanol. Controlled catalytic hydrogenation of the latter gave saturated derivatives 8 and 9 .  相似文献   

14.
Synthesis and in vitro antibacterial activity of 7-(1′-alkylhydrazino)-1,8-naphthyridines related to nalidixic acid were investigated. Namely, treatment of 7-alkylamino-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids 1a-d with sodium nitrite in the presence of hydrochloric acid gave the 1-ethyl-1,4-dihydro-7-(N-nitrosoalkylamino)-4-oxo-1,8-naphthyridine-3-carboxylic acids 2a-d , which upon reacting with zinc dust in acetic acid gave the 7-(1′-alkylhydrazino)-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylicacids 3a-d. The compound 3a was alternately obtained by the reaction of 7-chloro-1-ethyl-1,4-dihydro-4-oxo-1,8-naphth-yridine-3-carboxylic acid ( 4 ) with methylhydrazine. The reaction of 7-chloro-4-hydroxy-1,8-naphthyridine-3-carboxylic acid ( 5 ) with methylhydrazine gave the 4-hydroxy-7-(1′-methylhydrazino)-4-oxo-1,8-naphthyridine-3-carboxylic acid ( 6 ), which upon treatment with alkyl halides afforded the 1-alkyl-1,4-dihydro-7-(1′-methyl-hydrazino)-4-oxo-1,8-naphthyridines 3a and 3e-g. The reaction of the appropriate 3 with ketones gave the corresponding 7-(1′-methylalkylidenehydrazino)-1,8-naphthyridines 7a-c and 8a-b. Among the compounds prepared, certain 3 and 7 exhibited good activity against Gram-negative bacteria.  相似文献   

15.
Several 3-alkoxysubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides structurally related to adenosine, inosine and guanosine have been prepared by the direct glycosylation of preformed aglycon precursor containing a 3-alkoxy substituent. Ring closure of 5(3)-amino-3(5)-ethoxypyrazole-4-carboxamide ( 6b ) with either formamide or potassium ethyl xanthate gave 3-ethoxyallopurinol ( 7b ) and 3-ethoxy-6-thioxopyrazolo[3,4-d]-pyrimidin-4(5H,7H)-one ( 10 ), respectively. Methylation of 10 gave the corresponding 6-methylthio derivative 15 . Similar ring annulation of 5(3)-methoxypyrazole-4-carboxamide ( 6a ) with formamide afforded 3-methoxyallopurinol ( 7a ). Treatment of 5(3)-amino-3(5)-methoxypyrazole-4-carbonitrile ( 5a ) with formamidine acetate furnished 4-amino-3-methoxypyrazolo[3,4-d]pyrimidine ( 4 ). High-temperature glycosylation of 7b with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of boron trifluoride etherate gave a 2:1 mixture of N-1 and N-2 glycosyl blocked nucleosides 11b and 13b . Deprotection of 11b and 13b with sodium methoxide gave 3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 12b ) and the corresponding N-2 glycosyl isomer 14b , respectively. Similar glycosylation of either 4 or 7a , and subsequent debenzoylation gave exclusively 4-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine ( 9 ) and 3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-(5H)-one ( 12a ), respectively. The structural assignment of 12a was made on the basis of single-crystal X-ray analysis. Application of this general glycosylation procedure to 15 gave the corresponding N-1 glycosyl derivative 16 as the sole product, which on debenzoylation afforded 3-ethoxy-6-(methylthio)-1-(3-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ). Oxidation of 16 and subsequent ammonolysis furnished the guanosine analog 6-arnino-3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]-pyrimidin-4(5H)-one ( 19 ). Similarly, starting from 3-methoxy-4,6-bis(methylthio)pyrazolo[3,4-d]pyrimidine ( 20 ), 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 23 ) was prepared.  相似文献   

16.
Acylation of 4-carbamoylimidazolium-5-olate ( 2 ) with a variety of acid chlorides produced 4(5)-carbamoyl-1H-imidazol-5-(4)yl acid carboxylates ( 3a-j ). Treatment of esters 3a,c with sodium hydroxide gave imides, 4a,c . Methylation of 3a and 2 with diazomethane gave the N-3 methyl derivative ( 6 ) and a mixture of the N-3, O-dimethyl derivative ( 9 ), the N-1, N-3-dimethyl derivative ( 10 ) and the O-methyl derivative ( 11 ), respectively. 5-Carbamoyl-1-methylimidazolium-4-olate ( 7 ) and its 4-carbamoyl isomer ( 16 ) were prepared from 2-aminopropanediamides 8 and 15 , respectively. Treatment of the imidazolium compound ( 10 ) with aqueous potassium hydroxide gave the recyclized product, 1-methyl-5-methylcarbamoylimidazolium 4-olate ( 18 ). Methyl derivatives 6, 7 , and 9 except 16 demonstrated the complete lack of antitumor activity against Lewis lung carcinoma or sarcoma 180 in mice.  相似文献   

17.
Dehydrochlorination of chlorinated 5-hydroxy-2-oxabicyclo[3.2.0]heptan-4-ones, 3a-c, which were obtained from the photo[2+2]cycloadditions between 4-hydroxy-3(2H)-furanone 1 and chloroethylenes, with triethylamine gave 2-ethenyl-3(2H)-furanones 4a,b or 2-(2-cyanoethyl)-3(2H)-furanone 4c. 2-Oxa-bicyclo[3.2.0]hept-6-en-4-ones 7 being [2+2]cycloadducts between 1 and acetylenes gave 2,3-dihydro-3-oxooxepin derivatives 8 by electrocyclic rearrangement.  相似文献   

18.
Treatment of 2-pivaloyl-1,3-indandione ( 1 ) with hydroxylamine under acidic conditions, results in formation of 8-t-butylindeno[1,2-c]isoxazol-7-one ( 2 ) while treatment of the triketone with hydroxylamine at neutral or basic pH gave 6 which upon cyclization gave the isomeric 3-t-butylindeno[1,2-c]isoxazol-4-one ( 7 ). Compound 7 was readily reduced to amine 12 by treatment with hydrazine or hydrogen over platinum. The amine, although quite unreactive, was converted to 3-t-butylindeno[1,2-c]pyrazol-4-one ( 13 ) with hydrazine or reduced to 15 and 16 with sodium in liquid ammonia and alcohol. Surprisingly, the amine 3 obtained from isoxazole 2 gave reduction product 15 from a sodium-liquid ammonia reduction and not the expected product 18. Spectral evidence for each of the structures is discussed.  相似文献   

19.
4‐Azido‐3‐acylquinolones 4 obtained from 4‐hydroxy derivatives 1 via tosylates 3 or chlorides 5, reacted with arylhydrazines 6 to generate 4‐azido‐3‐hydrazonoalkylquinolines 7. Thermolysis of 7 gave ring closure products which were assigned to 2‐arylaminopyrazolo[4,3‐c]quinolones 10. The thermal decomposition conditions of the azides 4 and 7 were studied by differential scanning calorimetry (DSC).  相似文献   

20.
Acetone extraction of cultures of the marine ascomycete Leptosphaeria oraemaris (LINDER) on cornmeal disk gave the novel polyketide derivative leptosphaerolide ( = (+)-7-[(1E)-l,3-dimethylpent-1-enyl]-10-hydroxy-3-methoxybenzo[1,2-b:5,4-c′]dipyran-2(9H)-one; (4+)-8) besides the o-dihydroquinone 3-[(1E)-1,3-dimethylpent-1-euyl]-8,10-dihydroxy-7-methoxy-8-(2-oxopropyl)-1H-naphtho[2,3-c]pyran-9(8H)-one ( 1 ) as a 10:9 mixture of epimers. retro-Aldol reaction of 1 gave leptosphaerodione ( = (?)-3-[(1E)-1,3-dimethylpent-1-enyl]-10-hydroxy-7-methoxy-1H-naphtho[2,3-c]pyran-8,9(8H)-dione; (?)-6) which was also present in small amounts in the extracts and which gave 1 on reaction with acetone. It is thus likely that 1 is an artefact of the extraction by acetone. Biogenetically (+)-8 might derive from (?)-6 via an unusual oxidation with loss of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号