首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yiftach Barnea 《代数通讯》2013,41(3):1293-1303
Abstract

Let  be a simple classical Lie algebra over a field F of characteristic p > 7. We show that > d () = 2, where d() is the number of generators of . Let G be a profinite group. We say that G has lower rankl, if there are {G α} open subgroups which from a base for the topology at the identity and each G α is generated (topologically) by no more than l elements. There is a standard way to associate a Lie algebra L(G) to a finitely generated (filtered) pro-p group G. Suppose L(G) ?  ? tF p [t], where  is a simple Lie algebra over F p , the field of p elements. We show that the lower rank of G is ≤ d () + 1. We also show that if  is simple classical of rank r and p > 7 or p 2r 2 ? r, then the lower rank is actually 2.  相似文献   

2.
We show that if G is a definably compact, definably connected definable group defined in an arbitrary o‐minimal structure, then G is divisible. Furthermore, if G is defined in an o‐minimal expansion of a field, k ∈ ? and pk : GG is the definable map given by pk (x ) = xk for all xG , then we have |(pk )–1(x )| ≥ kr for all xG , where r > 0 is the maximal dimension of abelian definable subgroups of G . (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Let FG be the group algebra of a group G over a field F. Denote by ? the natural involution, (∑fi gi -1. Let S and K denote the set of symmetric and skew symmetric and skew symmetric elements respectively with respect to this involutin. It is proved that if the characteristic of F is zero p≠2 and G has no 2-elements, then the Lie nilpotence of S or K implies the Lie nilpotence of FG.  相似文献   

4.
Let R be a ring with nonzero identity. The unit graph of R, denoted by G(R), has its set of vertices equal to the set of all elements of R; distinct vertices x and y are adjacent if and only if x + y is a unit of R. In this article, the basic properties of G(R) are investigated and some characterization results regarding connectedness, chromatic index, diameter, girth, and planarity of G(R) are given. (These terms are defined in Definitions and Remarks 4.1, 5.1, 5.3, 5.9, and 5.13.)  相似文献   

5.
6.
A group G is called an “?-QC-group” if for any element x of order 2 or 4 of G, ?x? ?y? = ?y? ?x? for all y in G. In this article, we investigate the structure of the groups G of the title. Suppose that G is non-2-closed and non-2-nilpotent, then it turns out that such a group is either S 4 or a uniquely determined group of order 48 or A 5 or SL(2,5). The corresponding problem for G 2-closed or 2-nilpotent is open but very difficult.  相似文献   

7.
In this paper we obtain bounds for the order and exponent of the Schur multiplier of a p-group of given coclass. These are further improved for p-groups of maximal class. In particular, we prove that if G is p-group of maximal class, then |H 2(G, ℤ)| < |G| and expH 2(G, ℤ) ≤ expG. The bound for the order can be improved asymptotically.  相似文献   

8.
One of the most fundamental results concerning paths in graphs is due to Ore: In a graph G, if deg x + deg y ≧ |V(G)| + 1 for all pairs of nonadjacent vertices x, y ? V(G), then G is hamiltonian-connected. We generalize this result using set degrees. That is, for S ? V(G), let deg S = |x?S N(x)|, where N(x) = {v|xv ? E(G)} is the neighborhood of x. In particular we show: In a 3-connected graph G, if deg S1 + deg S2 ≧ |V(G)| + 1 for each pair of distinct 2-sets of vertices S1, S2 ? V(G), then G is hamiltonian-connected. Several corollaries and related results are also discussed.  相似文献   

9.
Suppose G is a connected reductive algebraic group, P is a parabolic subgroup of G, L is a Levi factor of P, and e is a regular nilpotent element in Lie L. We assume that the characteristic of the underlying field is good for G. Choose a maximal torus, T, and a Borel subgroup, B, of G, so that T?B∩L, B ? P and e ∈ Lie B. Let β be the variety of Borel subgroups of G and let ??e be the subset of ?? consisting of Borel subgroups whose Lie algebras contain e. Finally, let W be the Weyl group of G with respect to T. For ω ∈ W let ??ω be the B-orbit in ?? containing ωB. We consider the intersections ??ω ∩ ??e. The main result is that if dim ??ω ∩ ??e = dim ??e, then ??ω ∩ ??e is an affine space. Thus, the irreducible components of ??e are indexed by Weyl group elements. It is also shown that if G is of type A, then this set of Weyl group elements is a right cell in W.  相似文献   

10.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

11.
The Ostrowski theorem is a classical result which ensures the attraction of all the successive approximations x k+1 = G(x k ) near a fixed point x*. Different conditions [ultimately on the magnitude of G(x*)] provide lower bounds for the convergence order of the process as a whole. In this paper, we consider only one such sequence and we characterize its high convergence orders in terms of some spectral elements of G(x*); we obtain that the set of trajectories with high convergence orders is restricted to some affine subspaces, regardless of the nonlinearity of G. We analyze also the stability of the successive approximations under perturbation assumptions.  相似文献   

12.
Let n be an integer greater than 1, and let G be a group. A subset {x1, x2, ..., xn} of n elements of G is said to be rewritable if there are distinct permutations p \pi and s \sigma of {1, 2, ..., n} such that¶¶xp(1)xp(2) ?xp(n) = xs(1)xs(2) ?xs(n). x_{\pi(1)}x_{\pi(2)} \ldots x_{\pi(n)} = x_{\sigma(1)}x_{\sigma(2)} \ldots x_{\sigma(n)}. ¶¶A group is said to have the rewriting property Qn if every subset of n elements of the group is rewritable. In this paper we prove that a finite group of odd order has the property Q3 if and only if its derived subgroup has order not exceeding 5.  相似文献   

13.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

14.
Let G be a group. An element xG is called real if x is conjugate to x ?1 in G. In this paper we study the structure of real elements in the compact connected Lie group of type F 4 and algebraic groups of type F 4 defined over an arbitrary field.  相似文献   

15.
Let G be a finite group. A subgroup H of G is called an ?-subgroup in G if N G (H) ∩ H x  ≤ H for all x ∈ G. A subgroup H of G is called weakly ?-subgroup in G if there exists a normal subgroup K of G such that G = HK and HK is an ?-subgroup in G. In this article, we investigate the structure of the finite group G under the assumption that all maximal subgroups of every Sylow subgroup of some normal subgroup of G are weakly ?-subgroups in G. Some recent results are extended and generalized.  相似文献   

16.
Andrea Pachera 《代数通讯》2017,45(6):2494-2504
Given a group G denote with exp(G) its exponent, which is the least common multiple of the order of its elements. In this paper, we solve the problem of finding the finite simple groups having a proper subgroup with the same exponent. For each G with this property we will provide an explicit example of H<G with exp(G)?=?exp(H).  相似文献   

17.
For 1 ≤ dk, let Kk/d be the graph with vertices 0, 1, …, k ? 1, in which ij if d ≤ |i ? j| ≤ k ? d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgraph H of G, we have χc(H) = ωc(H). In this paper, we prove that if G is circular perfect then for every vertex x of G, NG[x] is a perfect graph. Conversely, we prove that if for every vertex x of G, NG[x] is a perfect graph and G ? N[x] is a bipartite graph with no induced P5 (the path with five vertices), then G is a circular perfect graph. In a companion paper, we apply the main result of this paper to prove an analog of Haj?os theorem for circular chromatic number for k/d ≥ 3. Namely, we shall design a few graph operations and prove that for any k/d ≥ 3, starting from the graph Kk/d, one can construct all graphs of circular chromatic number at least k/d by repeatedly applying these graph operations. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 186–209, 2005  相似文献   

18.
19.
Let G be a nonabelian group. We define the noncommuting graph ∇(G) of G as follows: its vertex set is G\Z(G), the set of non-central elements of G, and two different vertices x and y are joined by an edge if and only if x and y do not commute as elements of G, i.e., [x, y] ≠ 1. We prove that if L ∈ {L 4(7), L 4(11), L 4(13), L 4(16), L 4(17)} and G is a finite group such that ∇(G) ≅ ∇(L), then GL.  相似文献   

20.
LetG be a connected, reductive, linear algebraic group over an algebraically closed fieldk of characteristik zero. LetH 1 andH 2 be two spherical subgroups ofG. It is shown that for allg in a Zariski open subset ofG one has a Lie algebra decomposition g = h1 + Adg ? h2, where a is the Lie algebra of a torus and dim a ≤ min (rankG/H 1,rankG/H 2). As an application one obtains an estimate of the transcendence degree of the fieldk(G/H 1 xG/H 2) G for the diagonal action ofG. Ifk = ? andG a is a real form ofG defined by an antiholomorphic involution σ :GG then for a spherical subgroup H ? G and for allg in a Hausdorff open subset ofG one has a decomposition g = ga + a Adg ? h, where a is the Lie algebra of σ-invariant torus and dim a ≤ rankG/H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号