首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Concerning the Influence of the Substituents R = Ph, NEt2, iPr, and tBu in Triphosphanes (R2P)2P? SiMe3 and Phosphides Li(THF)2[(R2P)2P] on the Formation and Properties of Phosphino-phosphinidene-phosphoranes The triphosphanes X2P? P(SiMe3)? PY2 5, 7, 9, 11, 13 and the derived phosphides Li(THF)2[X2P? P? PY2] 6, 8, 10, 12, 14 were synthesized: 5 and 6 with X2 = iPr2 and Y2 = tBu2, 7 and 8 with X2 = Y2 = PhtBu, 9 and 10 with X2 = tBu2 and Y2 = Ph2, 11 and 12 with X2 = Y2 = Ph2, and 13 and 14 with X2 = tBu2 and Y2 = (NEt2)2. The silylated triphosphanes at ?70°C in toluene with CBr4 may yield X2P? P?P(Br)Y2 and X2P? P(Br)? PY2, and the lithiated phosphides with MeCl may yield X2P? P?P(Me)Y2 and X2P? P(Me)? PY2 depending on X and Y. The bromiated product of 5 (X2 = iPr2, Y2 = tBu2) is the ylide iPr2P? P?P(Br)tBu2, and the methylated derivatives of 6 are both iPr2P? P?P(Me)tBu2, tBu2P? P?P(Me)iPr and the methylated triphosphane. Ph2P? P?P(Br)tBu2 as well as the brominated triphosphane are obtained from 9 (X2 = tBu2, Y2 = Ph2), and similarly Ph2P? P?P(Me)tBu2 and the methylated triphosphane from 10 . Compound 14 (X2 = tBu2, Y2 = (NEt2)2 gives rise to the brominated ylide tBu2)P? P?P(Br) · (NEt2)2 and to the brominated triphosphane, and on methylation to tBu2P? P?P(Me)(NEt2)2 and to tBu2P? P(Me)? P · (NEt2)2 (main product). The Br substituted derivatives decompose already on warming to ?30°C, while the methylated compounds are stable up to 20°C.  相似文献   

2.
Phosphorane Iminato Complexes of Niobium and Tantalum. Crystal Structures of [NbCl4(NPiPr3)(CH3CN)], [NbCl3(NPiPr3)2], [TaCl4(NPiPr3)]2, and [TaCl3(NPiPr3)2] The title compounds have been prepared from the pentachlorides of niobium and tantalum with the silylated phosphorane imine Me3SiNPiPr3. They are characterized by IR spectroscopy and crystal structure determinations. NbCl4(NPiPr3)(CH3CN)] . Space group Pna21, Z = 4, 2102 observed unique reflections, R = 0.022. Lattice dimensions at ?50°C: a = 1627.2, b = 876.3, c = 1335.3 pm. The compound forms monomeric molecules with the acetonitrile molecule in trans position to the phosphorane iminato group. This group shows a short NbN distance of 178.2 pm with a NbNP bond angle of 165.2°. [NbCl3(NPiPr3)2] . Space group Cc, Z = 4, 2534 observed unique reflections, R = 0.046. Lattice dimensions at 20°C: a = 1302.65, b = 1321.69, c = 1672.04 pm, β = 111.713°. The compound forms monomeric molecules with a distorted bipyramidal surrounding of the niobium atom and equatorially arranged phosphorane iminato groups. [TaCl4(NPiPr3)]2 . Space group Pbca, Z = 4, 1537 observed unique reflections, R = 0.037. Lattice dimensions at ?40°C: a = 1420.6, b = 1483.9, c = 1622.0 pm. The compound forms centrosymmetric dimeric molecules with dissimilarly long Ta2Cl2 bridges and equatorially arranged phosphorane iminato groups. [TaCl3(NPiPr3)2] . Space group Cc, Z = 4, 5737 observed unique reflections, R = 0.039. Lattice dimensions at ?50°C: a = 1303.9, b = 1327.2, c = 1682.1 pm, β = 111,92°. The compound is isotypical with the corresponding niobium compound.  相似文献   

3.
《Polyhedron》1987,6(7):1551-1557
In ethereal solutions, WSCl4 and 4 equiv LiOR (R = But or Pri) react to form compounds of formula W(S)(OR)4. A single-crystal X-ray diffraction study of W(S)(O-But)4 showed it to have a square-based pyramidal geometry with an apical sulfide ligand. Pertinent bond distances (Å) and angles (°) are: WS = 2.1396(13), WO(av.) = 1.886(3), SWO(av.) = 105.09(10), WOC(av.) = 143.47(27). The tert-butoxide compound is stable toward sulfur atom abstraction by phosphines, and neither compound has shown any tendency to undergo comproportionations with W2(OR)6 (R = Pri or CH2But) species to form compounds of formula W33-S)(OR)10, in direct contrast to analogous molybdenum and tungsten oxo alkoxides.  相似文献   

4.
The structure of the NbCl4 molecule is studied experimentally by the synchronous electron diffraction and mass spectrometry methods. The model molecular geometries of C2v, C3v, D2d, and Td symmetries are verified. The advantages of the tetrahedral model over the other models are established. The thermally averaged parameters of the effective configuration of the NbCl4 molecule are as follows: rg(Nb?Cl)=2.279(5) Å, l(Nb?Cl)=0.073(2) Å, rg(Cl?Cl)=3.692(17) Å, l(Cl?Cl)=0.275(11) Å, ∠g(Cl-Nb-Cl)=108.2(5)°, and δ(Cl?Cl)=0.030(19) Å.  相似文献   

5.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

6.
The molecular structures of cis-3-hexene and of trans-3-hexene in the gas phase have been determined by electron diffraction combined with molecular mechanical calculations. For cis-3-hexene the data indicate the presence of the (+ac, +ac) and the (?ac, +ac) forms. In trans-3 -hexene three rotamers were observed, with an energy sequence E(+ac, +ac) ≈ E(?ac, +ac) < E(ac, sp). The refined rα0-structural parameters are: cis-3-hexene: C-H = 1.073 Å, CC = 1.330 Å, C(sp2)-C(sp3) = 1.505 Å, ∠CCH(in CH2) = 111.1°, ∠CCC = 111.4°, ∠(CC-C) = 129.1° trans-3-hexene: C-H = 1.078 Å, CC = 1.342 Å, C(sp2)-C(sp3) = 1.506 Å, ∠CCH(in CH2) = 109.3°, ∠CCC = 112.8, ∠CC—C = 124.1°The agreement between calculated and experimental geometries and vibrational amplitudes is good.  相似文献   

7.
Ca2[BN2]H was synthesized from a mixture of the binary components Ca3N2, CaH2 and BN (molar ratio 1 : 1 : 2) in a sealed steel ampoule encapsulated in an evacuated silica tube at 1273 K. Ca2[BN2]H crystallizes in the orthorhombic space group Pnma (no. 62) with a = 9.2015(8)Å, b = 3.6676(2)Å and c = 9.9874(12)Å (Z = 4; Pearson symbol oP24). The crystal structure is a filled variant of the Co2P type and can be formulated as Co2P(□t)3(□py)3 ≡ Ca2[N—B—N]H(□t)2(□py)3 (□t and □py = tetrahedral and square‐pyramidal hole, respectively). The d(B—N) bond lengths and bond angle for the linear [N—B—N]3— anion are: d(B—N1) = 1.324(3)Å, d(B—N2) = 1.350(2)Å and ∠N—B—N = 177.2(2)°. The vibrational spectra of Ca2[BN2]H confirm the presence of [N—B—N]3— groups deviating only slightly from the ideal Dh symmetry. The vibrational frequencies and the ?(B—N) force constants are discussed and compared with those of the isotypic compound Ca2[BN2]F.  相似文献   

8.
Summary. The molecular precursors Nb(OiPr)2[OSi(OtBu)3]3 and {Nb(OiPr)4[O2P(OtBu)2]}2 have been prepared. The first compound undergoes facile thermal conversion to high surface area, acidic niobia silica, whereas the second one thermally decomposes to a low surface area niobium phosphate.  相似文献   

9.
The molecular precursors Nb(OiPr)2[OSi(OtBu)3]3 and {Nb(OiPr)4[O2P(OtBu)2]}2 have been prepared. The first compound undergoes facile thermal conversion to high surface area, acidic niobia silica, whereas the second one thermally decomposes to a low surface area niobium phosphate.  相似文献   

10.
[(C5H2tBu3-1,2,4)2Pb] ( 1 ), [(C5HiPr4)2Pb] ( 2 ), and [(C5iPr5)2Pb] ( 3 ) have been obtained from PbCl2 and Li(C5H2tBu3-1,2,4), Na(C5HiPr4) and Na(C5iPr5), respectively. 3 exists as a 1 : 1 mixture of meso- 3 and rac- 3 which interconvert at elevated temperature via one-at-a-time rotation of isopropyl groups with ΔG# = 73.0 ± 1.5/73.7 ± 1.5 kJ/mol at 348 K. 3 is slightly bent in the solid state with an angle of 170(1)° between the ring normals.  相似文献   

11.
The molecular structure of 1,1,1,2-tetrafluoroethane is studied using gas-phase electron diffraction data collected on the Balzers KDG2 instrument. Effective least-squares refinement of the geometry is achieved with values for vibrational amplitudes transferred from normal coordinate calculations on related molecules. The following values for the main independent geometrical parameters are obtained (ra values with e.s.d. in parentheses): C-C = 1.501(4) Å, C-H = 1.077 (15) Å, C-F(CH2F) = 1.389(6) Å, C-F(CF3) = 1.334 (2) Å, ∠CCH= 106.1(12)°, ∠CCF(CH2F)= 112.3(4) Å, ∠CCF(CF3)= 110.4(2). Other angles are ∠FCF = 108.6 (2)° and ∠FCH = 111.4(15)°, with ∠HCH constrained at 109.4°. The ra bond lengths of all the fluoroethanes are compared.  相似文献   

12.
Room temperature reaction of a benzene solution of [Cp2Mo2Fe2(CO)73-E)(μ3-E)] (EE=Se2 (1), STe (2), SeTe (3)) with PriNC or ButNC resulted in the formation of iron bonded isocyanide clusters [Cp2Mo2Fe2(RNC)(CO)63-E)(μ3-E)], [E=E=Se, R=Pri (5) or But (9); E=S, E=Te, R=Pri (6a, 6b) or R=But (10a, 10b); E=Se, E=Te, R=Pri (7a, 7b) or R=But (11a, 11b)] and molybdenum bonded isocyanide clusters [Cp2(RNC)Mo2Fe2(CO)63-E)(μ3-E)], [E=E=Se, R=Pri(13) or But (17); E=S, E=Te, R=Pri (14) or R=But, (18); E=Se, E=Te, R=Pri (15) or R=But (19)]. Two isomers (a and b) were detected by 1H NMR spectroscopy for the mixed-chalcogen clusters 6, 7, 10 and 11, where the isocyanide group is bonded to an iron atom. Thermolytic reaction conditions were necessary for the reaction of [(η5-C5H5)2Mo2Fe2(CO)73-Te)2] (4) with Pri NC or But NC to give [Cp2Mo2Fe2(RNC)(CO)63-Te)2] (R=Pri (8) or R=But, (12)) and [Cp2(RNC)Mo2Fe2(CO)63-Te)2] (R=Pri (8)). Compounds 5-19 have been characterised by IR and 1H and 13C NMR spectroscopy. The Se- and Te-bridged compounds have been further characterised by 77Se and 125Te NMR spectroscopy. The structures of compounds 12 and 14 were determined by single crystal X-ray diffraction methods. Redox properties of the mixed-metal clusters, 2, 6, 8, 12 and 14 have been studied by cyclic voltammetry in the potential range ±2.5 V at 298 K, using a platinum working electrode.  相似文献   

13.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

14.
When an alkylphenylphosphinic acid PRhP(O)N3 (R = Me, Et, Pri, or But) is photolysed in MeOH either the alkyl or phenyl group can migrate from P to N in the Curtius-like rearrangement. The composition of the product shows that migration of the alkyl group R is preferred. However, the preference is not great and decreases as R changes But→Pri→Et→Me (approx. migratory aptitudes relative to Ph: 2.1, 1.7, 1.3 and 1.2 respectively), probably because the PhP bond is better able to assume the correct conformation for Ph migration when R is less bulky. For t-butylmethylphosphic azide there is very little preference for migration of But relative to Me. Small amounts of unrearranged products such as ButPhP(O)NHOMe and ButPhP(O)NH2 are generally produced in the photolyses, together with the methyl phosphinates RPhP(O)OMe (major product when R = Me) resulting from (non-photochemical) solvolysis of the azide.  相似文献   

15.
The structure of 1 -chloro-1 -si labicyclo( 2.2.2 )octane is determined by gas-phase electron diffraction. The molecule is found to have a large amplitude twisting motion with a double minimum quartic potential function of the form V(φ) = Vo[1 + (φ/φo)4 - 2(φ/φo)2]. Least-squares analysis of the experimental data gives values of 1.4(0.8) kcal mole? for Vo and 17.5(2.5)° for φo. Other structural parameters for the “quasi-C3v” cage-like molecule include: rg(Si-Cl) = 2.061(3) Å, rg(Si-C) = 1.863(3) Å, rg(C-Cav) = 1.559(2) Å, and rg(C-Hav) = 1.098(7) Å. Several valence angles exhibit large deviations from tetrahedral values, e.g. ∠Cl-Si-C2 = 114.6(0.2)°, ∠Si-C2-C3 = 105.8(0.4)°, ∠C2-C3-C4 = 114.2(1.2)°, ∠C-3-C4-C5 = 111.4(0.8)° and ∠C2-Si-C6= 103.9(0.2)°. Many of the structural features in this strained polycyclic compound. Including the nature of the quartic potential function, can be rationalized in terms of a simple molecular mechanics model. A new method for the calculation of an analytical Jacobian of the intensity function with respect to parameters of the potential function is also discussed.  相似文献   

16.
[iPr2P]2P? SiMe3 and [iPr2P]2PLi – Synthesis and Reactions Structure of [iPr2P]2P? P[PiPr2]2 [iPr2P]2P? SiMe3 1 and [iPr2P]2PLi 2 were prepared to investigate the influence of the bulky alkyl groups on formation and properties of the ylides R2P? P?P(X)R2 (R = iPr, tBu; X = Br, Me) in reactions of 1 with CBr4 and of 2 with 1,2-dibromoethane or MeCl, resp. Compared to the iPr groups the tBu groups favour the formation of ylides. With CBr4 1 forms iPr2P? P?P(Br)iPr2 5 just as a minor product which decomposes already below ?30°C. With 1,2-dibromoethane 2 yields only traces of 5 but [iPr2P]P? P[P(iPr)2]2 7 as main product. With MeCl 2 gives iPrP? P?P(Me)iPr2 9 and [iPr2P]2PMe 10 in a molar ratio of 1:1. 9 is considerably more stable than 5. 7 crystallizes triclinic in the space group P1 (No. 2) with a = 10.813 Å, b = 11.967 Å, c = 15.362 Å, α = 67.90°, β = 71.36°, γ = 64.11° and two formula units in the unit cell.  相似文献   

17.
The first monomeric tetralakylphosphinoborane tBu2BPtBu2 was synthesized from tBu2BBr and LiPtBu2. It decomposes above −20°C via double retro-hydroboration and elimination of isobutene, undergoes subsequent re-hydroboration and dimerisation to give stable bis(phosphinoborane)[iBu(H)BPtBu2]2, whose molecular structure was determined by X-ray diffraction. It contains a planar, almost square (BP)2 four-membered ring. The BP distances are 2.004(4)/2.022(4) Å. The first monomeric triphosphinoborane, Me2PB(PMes2)2, was synthesized similarly. All compounds have been characterized by NMR spectroscopy.  相似文献   

18.
The molecular structure of 1,2,4-triazole has been determined by gas phase electron diffraction. The intemuclear distances and bond angles were obtained by applying a least-squares analysis to the experimental intensity. The bond distances (rg) and bond angles were N1-N2 = 1.380 ± 0.010 Å, N2C3 = 1.329 ± 0.009 Å, C3-N4 = 1.348 ± 0.009 Å, N1-C5 = 1.377 ± 0.004 Å, N4C5 = 1.305 Å (calculated value). N-H = 0.990 Å, C-H = 1.054 Å, ∠N1N2C3 = 102.7± 0.5°, ∠N2C3N4 = 113.8 ± 1.3°, ∠N2N1C5 = 108.9 ± 0.8°, ∠H1N1N2 = 110.9°, ∠H2C3N4 = 119.2°, ∠H3C5N1 = 131.0°, ∠C3N4C5 = 105.7° (calculated value) and ∠N4C5N1 = 108.7° (calculated value).  相似文献   

19.
The molecular structure of the title compounds have been investigated by gas-phase electron diffraction. Both molecules exist as about equal amounts of the two gauche conformers. There is no evidence for the presence of a syn conformer, but small amounts of this form cannot be excluded. Some of the important distance (ra) and angle (∠α) parameters for 1,1-dichloro-2-bromomethyl-cyclopropane are: r(CH) = 1.095(19) Å, r(C1C2) = 1.476(11) Å, r(C2C3) = 1.517(31) Å, r(CCH2Br) = 1.543(32) Å, r(CCl) = 1.752(6) Å, r(CBr) = 1.950(13) Å, ∠CCBr = 110.5(1.9)°, ∠ClCCl = 111.9(6)°, ∠CCC = 117.5(1.3)°, σ1 (CC torsion angle between CBr and the three-membered ring for gauche-1) = 116.2(5.6)°, σ2 = −132.7(7.6). For 1,1-dichloro-2-cyanomethyl-cyclopropane the parameter values are: r(CH) = 1.101(16) Å, r(C1C2) = 1.498(9) Å, r(C2C3) = 1.544(21) Å, r(C2C4) = 1.497(33) Å, r(CCN) = 1.466(26) Å, r(CN) = 1.165(8) Å, r(CCl) = 1.754(5) Å, ∠CCCN = 113.7(2.0)°, ∠CCC = 122.8(1.6)°, ClCCl = 112.5(4)°, σ1 = 113(13)°, σ2 = −124(10)°.  相似文献   

20.
The parent hydrocarbon, Dewar-benzene, has been studied by gas phase electron diffraction analysis. Assignment of C2v symmetry gave excellent agreement between the experimental and theoretical data. The structural parameters obtained were in good agreement with previous electron diffraction structures of substituted derivatives of the Dewar-benzene series. The structural parameters with error limits are (cf. Fig. 2): r(C3-C6) = 1.574 ± 0.005 Å r(C2-C3) = 1.524 ± 0.002 Å, r(C1-C2) = 1.345 ± 0.001 Å, r(C3-C9) = 1.134 ± 0.004 Å, r(C1-C7) = 1.124 ± 0.004 Å, ∠C1C6C5 = 116.7 ± 0.6°, ∠C3C6C1 = 85.7 ± 0.2°, ∠C6C3C9 = 108.0 ± 3.0°, ∠C3C2C8 = 126.7 ± 2.5°, and α = 117.25 ± 0.6°. The angle γ was assumed to be 0°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号