首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The paper presents various formulations of characteristics-based schemes in the framework of the artificial-compressibility method for variable-density incompressible flows. In contrast to constant-density incompressible flows, where the characteristics-based variables reconstruction leads to a single formulation, in the case of variable density flows three different schemes can be obtained henceforth labeled as: transport, conservative and hybrid schemes. The conservative scheme results in pseudo-compressibility terms in the (multi-species) density reconstruction. It is shown that in the limit of constant density, the transport scheme becomes the (original) characteristics-based scheme for incompressible flows, but the conservative and hybrid schemes lead to a new characteristics-based variant for constant density flows. The characteristics-based schemes are combined with second and third-order interpolation for increasing the computational accuracy locally at the cell faces of the control volume. Numerical experiments for constant density flows reveal that all the characteristics-based schemes result in the same flow solution, but they exhibit different convergence behavior. The multigrid implementation and numerical studies for variable density flows are presented in Part II of this study.  相似文献   

2.
Efficient computation of compressible and incompressible flows   总被引:1,自引:0,他引:1  
The combination of explicit Runge–Kutta time integration with the solution of an implicit system of equations, which in earlier work demonstrated increased efficiency in computing compressible flow on highly stretched meshes, is extended toward conditions where the free stream Mach number approaches zero. Expressing the inviscid flux Jacobians in terms of Mach number, an artificial speed of sound as in low Mach number preconditioning is introduced into the Jacobians, leading to a consistent formulation of the implicit and explicit parts of the discrete equations. Besides extension to low Mach number flows, the augmented Runge–Kutta/Implicit method allowed the admissible Courant–Friedrichs–Lewy number to be increased from O(1 0 0) to O(1 0 0 0). The implicit step introduced into the Runge–Kutta framework acts as a preconditioner which now addresses both, the stiffness in the discrete equations associated with highly stretched meshes, and the stiffness in the analytical equations associated with the disparity in the eigenvalues of the inviscid flux Jacobians. Integrated into a multigrid algorithm, the method is applied to efficiently compute different cases of inviscid flow around airfoils at various Mach numbers, and viscous turbulent airfoil flow with varying Mach and Reynolds number. Compared to well tuned conventional methods, computation times are reduced by half an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号