首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn掺杂ZnO稀磁半导体材料的制备和磁性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用共沉淀方法制备了名义组分为Zn1-xMnxO(x=0.001,0.005,0.007,0.01)的Mn掺杂的ZnO基稀磁半导体材料,并研究了在大气气氛下经过不同温度退火后样品的结构和磁性的变化.结果表明:样品在600℃的大气条件下退火后, 仍为单一的六方纤锌矿结构的ZnO颗粒材料;当样品经过800℃退火后,Mn掺杂量为0.007,0.01的样品中除了ZnO纤锌矿结构外还观察到ZnMnO3第二相的存在.磁性测量表明,大气条件下600℃退火后的样品,呈现出室温铁磁性;而800℃退火后的样品,其室温铁磁性显著减弱,并表现为明显的顺磁性.结合对样品的光致发光谱的分析,认为合成样品的室温铁磁性是由于Mn离子对ZnO中的Zn离子的替代形成的. 关键词: ZnO 掺杂 稀磁半导体 铁磁性  相似文献   

2.
利用脉冲激光沉积方法制备出了具有室温铁磁性的Ni1-1-xFexO(x=0.02,O.05)稀磁半导体.X射线衍射(XRD)结果表明Ni,1-xFexO的品体结构为Nacl结构,并且在Fe含量较高的Ni095Fe0.05O中出现了少量的a-Fe2O3物相.X射线吸收近边结构谱(XANFS)和X射线光电子能谱(XPs)进一步表明了掺杂的Fe原子替代Ni0日格中Ni原子,并且样品中不存在能够诱导室温磁性的第二相.这些研究结果表明Ni1-xFexO的室温铁磁性是本征的.  相似文献   

3.
在X射线粉末衍射仪的样品台附近施加磁场 ,测得了在原位磁场下分别具有顺磁性、抗磁性、铁磁性、亚铁磁性、反铁磁性和磁性混合物的 6个样品的X射线衍射图谱 .与无磁场时的相应衍射图谱相比较 ,这些图谱中有衍射峰消失 ,又有新的衍射峰出现 ;或是峰位置和强度发生变化 ;而且磁场方向不同时 ,衍射图谱也不一样 .产生这些现象的部分原因可能是 ,在磁场下物质内部的磁矩沿着磁场方向定向 ,粉末晶胞内产生应力 ,导致晶格歧变 (如磁致伸缩效应 )或者晶粒沿着易磁化轴方向择优取向  相似文献   

4.
一、磁性的意义和分类 所渭磁性,从广义上讲,是指物体在不均匀磁场中受力的性质。由受力的强弱又分为强磁性和弱磁性。一般常把强磁性称为磁性(狭义)或铁磁性,而不恰当地把弱磁性称为“无磁性”或“非磁性”。弱磁性又分为抗磁性和顺磁性。在不均匀磁场中物体沿磁场减弱方向受力的性质称为抗磁性,这是一切物体都具有的性质,但有时为其它更强的磁性所掩盖;如水、铜和绝大多数有机分子和生物大分子都是抗磁性物质。在不均匀磁场中,物质沿磁场增强方向受力的性质称为顺磁性,如铝、氧化和未氧化的血红蛋白都是顺磁性物质。在不均匀性磁场中,物体沿磁场增强方向受力且比顺磁性强几万甚至几百万倍以上的性质称为强磁性,一般常称为铁磁性。强磁性是由于物体中磁性原子的磁矩,在一定条件下受一种强的相互作用而排列有序时产生的。根据磁有序类型的不同,又分为铁磁性(原子磁矩平行排列)、亚铁磁性(两类或更多种大小不同的磁矩反平行排列)和其它更为复杂的磁有序性:但如果磁有序的原子磁矩互相抵消,则不显强磁性,称为反铁磁性。常见的铁磁性物质有铁、钴、镍及其一些合金和化合物;常见的亚铁磁性物质有磁铁矿和多种铁氧体材料;FeO、CoO、NiO则是反铁磁物质。研究广义  相似文献   

5.
赵翠莲  甄聪棉  马丽  潘成福  侯登录 《物理学报》2013,62(3):37502-037502
利用等离子体增强化学气相沉积技术制备了厚度不同的Ge薄膜, 随着样品厚度的减小, 样品表现出了室温铁磁性. 厚度为12 nm样品经过300 ℃退火后, 由于颗粒细化, 颗粒之间的界面增加, 界面缺陷增加, 样品表现出最大的铁磁性 (50 emu/cm3). 场冷却和零场冷却曲线测试表明居里温度约为350 K. 进行600 ℃退火后, 颗粒团聚, 样品的铁磁性最小. 当样品厚度进一步减小为6 nm时, 沉积态样品表现出铁磁性和顺磁性共存. 对6 nm厚的样品进行300 ℃退火后, 样品只具有铁磁性. 进行600 ℃退火后, 样品却只具有顺磁性. 12 nm 和6 nm 厚的Ge纳米结构薄膜随退火温度变化表现出不同的磁性规律, 我们认为是由于样品的颗粒大小和颗粒分布不同造成的. 样品越薄, Si基底与Ge薄膜之间的界面缺陷越明显, 界面缺陷以及Ge颗粒之间的界面缺陷为样品提供了未配对电子, 未配对电子的铁磁性耦合强度与样品颗粒的分布以及颗粒之间的结合有一定的关系. 颗粒之间分散或颗粒之间的融合程度大都将会降低样品的铁磁性.  相似文献   

6.
秦克诚 《大学物理》2004,23(3):59-61
磁学是凝聚态物理学的一个重要分支学科,研究宏观物质的磁性及其应用.宏观物质的磁性来自原子磁矩,即原子中各个电子的轨道磁矩和自旋磁矩的矢量和.法拉第于1840年前后对物质的磁性进行了系统的观察和测量,发现物质的磁性分为三大类:抗磁性、顺磁性和铁磁性.此后近百年都保持了这样的看法.  相似文献   

7.
CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变   总被引:1,自引:1,他引:0       下载免费PDF全文
利用固相反应法在700℃-1000℃不同的温度下、空气中烧结Co3O4和TiO2混合物,制备了(Co3O4)x/3(TiO2)1-x(0相似文献   

8.
La0.1Bi0.9-xEuxFeO3化合物的结构与性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用固相反应烧结技术制备La0.1Bi0.9-xEuxFeO3系列化合物.利用X射线粉末衍射进行物相鉴定和结构分析,确定了材料的相关系:x≤0.05,材料为R3c结构相;0.08≤x≤0.12,材料为赝R3c结构相;x≥0.15是Pbnm相,其中0.15≤x≤0.20区域Pbnm相存在畸变.磁测量结果表明,材料具有弱铁磁性,对于x≤0.20材料,磁矩在x=0.12成分存在极值.利用阻抗分析仪测量了室温介电常数随成分的变化关系.讨论了材料的结构与弱铁磁性和室温介电常数间的关系.  相似文献   

9.
本文通过高温氨化由磁控溅射方法制备的Ga2O3:Fe薄膜,成功地在单晶硅(100)基底上制备了Fe掺杂的GaN薄膜.X射线衍射结果显示Fe掺杂浓度为0%~7%的GaN薄膜均未发现第二相.磁性测量表明所有Fe掺杂的样品均显示出室温铁磁性,而且每个Fe原子的磁矩随Fe浓度的增加而减小,Fe的浓度为1%时每个Fe的磁矩最大,最大值为1.92μB/Fe.  相似文献   

10.
通过快速液相烧结法制备了BiFeO3、Bi0.9Gd0.1FeO3和Bi0.9Gd0.1Fe0.95Ti0.05O3(BGFTO)块材.x射线衍射和拉曼散射光谱表明Gd和Ti共掺杂后的BGFTO样品产生结构相变.共掺杂样品BGFTO室温下的铁磁性得到显著提高,矫顽力达到1.51T,剩余磁矩为0.175emu/g.磁性得到显著提高的根本原因是共掺杂引起元素替换导致了体系中的螺旋磁结构被抑制.A位和B位共掺杂是引发BiFeO3自发磁化的最有效的方法.  相似文献   

11.
程兴旺  李祥  高院玲  于宙  龙雪  刘颖 《物理学报》2009,58(3):2018-2022
采用溶胶-凝胶法制备出具有室温铁磁性的Co掺杂的ZnO稀磁半导体材料. 通过对样品的结构、磁性和发光特性的研究发现,样品具有室温铁磁性,并发现其铁磁性源于磁性离子对ZnO中Zn离子的取代. 对不同温度制备的样品的磁性以及其发光特性的变化研究发现,样品的铁磁性与样品中锌间隙位(Zni)缺陷的密度有关. 关键词: ZnO 稀磁半导体 铁磁性  相似文献   

12.
采用脉冲激光沉积技术在LaAlO_3(100)基片上制备了TiO_2薄膜,研究了氧气分压对薄膜结构、磁性与输运性质的影响.结构测量表明,TiO_2薄膜的结构与沉积过程中的氧气分压有关,氧气分压的增大有利于薄膜向锐钛矿相转变.磁性测量表明,在较高的氧气分压下制备的TiO_2薄膜表现为顺磁性,在较低氧气分压下制备的TiO_2薄膜表现出明显的室温铁磁性,其铁磁性与氧空位有密切关系.输运测量进一步表明,TiO_2薄膜表现为半导体导电特性,在具有铁磁性的薄膜中还观察到了低温磁电阻效应.  相似文献   

13.
Zn1-xCoxO稀磁半导体薄膜的结构及其磁性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用X射线吸收精细结构、X射线衍射和磁性测量等技术研究脉冲激光气相沉积法制备的Zn1-zCoxO(x=0.01,0.02)稀磁半导体薄膜的结构和磁性.磁性测量结果表明Zn1-xCoxO样品都具有室温铁磁性.X射线衍射结果显示其薄膜样品具有结晶良好的纤锌矿结构.荧光X射线吸收精细结构测试结果表明,脉冲激光气相沉积法制备的样品中的Co离子全部进入ZnO晶格中替代了部分Zn的格点位置,生成单一相的Zn1-xCoxO稀磁半导体.通过对X射线吸收近边结构谱的分析,确定Zn1-xCoxO薄膜中存在O空位,表明Co离子与O空位的相互作用是诱导Zn1-xCoxO产生室温铁磁性的主要原因.  相似文献   

14.
利用固相反应法在700℃—1000℃不同的温度下、空气中烧结Co3O4 和TiO2混合物,制备了(Co3O4)x/3(TiO2)1-x(03,说明Co3O4与TiO2反应形成了CoT iO3;同时,在700 ℃低温和900 ℃以上的高温烧结样品中分别观察到了单相的 锐钛矿和金红石相结构.经高低温烧结的样品在500 ℃氢退火后,CoTiO3相消失 ,锐钛矿相的CoxTi1-xO2-δ形成.X射线光电子能谱(X PS)分析显示,氢退火样品中的Co以+2氧化价态存在,同时没有观察到金属态的Co,这说明 氢退火样品中的室温铁磁性不是源于金属Co颗粒的形成,而是与钙钛矿结构的CoTiO3< /sub>相的消失和锐钛矿型的CoxTi1-xO2-δ相的形成 有关.(Co3O4)x/3(TiO2)1-x( 0xTi1-xO2-δ相的本征铁磁性,伴随着结构相变而产生的Co离子之间的铁磁交换相互作用或 许是样品室温铁磁性产生的根本原因. 关键词: 室温铁磁性 结构相变 锐钛矿 氢退火  相似文献   

15.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

16.
潘峰  丁斌峰  法涛  成枫锋  周生强  姚淑德 《物理学报》2011,60(10):108501-108501
过渡族元素掺杂ZnO生成稀磁半导体, 成为近期国际材料科学研究的热点. 在本文中, 研究Fe离子注入ZnO单晶的结构和磁性变化, 目标是建立磁性和结构的对应关系, 澄清铁磁性的来源. 采用卢瑟福背散射/沟道技术 (RBS/Channelling)、同步辐射X射线衍射 (SR-XRD)和超导量子干涉仪 (SQUID), 研究注入温度和退火对样品的晶格损伤、结构及磁性的影响. 研究表明: 样品注入区损伤随注入温度升高而降低; 低温253 K注入样品中, SR-XRD未检测到新相, Fe离子分布于Zn位, ZnO (0002) 峰右侧肩峰可能属于Zn1-xFexO, 5 K下测试样品不具有铁磁性; 623 K注入和823 K真空退火 (253 K注入) 样品中形成α和γ相金属Fe, 5 K下样品具有明显的剩磁和矫顽力, 零场冷却和场冷却 (ZFC/FC) 曲线和300 K下的磁滞回线显示纳米Fe颗粒具有超顺磁性. Fe离子注入ZnO的磁性源于第二相α-Fe和γ-Fe. 关键词: 离子注入 ZnO 同步辐射X射线衍射 超顺磁性  相似文献   

17.
利用X射线近边吸收谱对Fe2P,Ni2P及其掺杂物(Fe1-xNix)2P(x=0.1,0.25,0.5)中Fe,Ni,P的K边进行了研究.结合多重散射理论近边计算,讨论了金属原子不同位置格点3f,3g对近边谱特征的贡献,得出当Ni原子取代Fe原子时将优先占据Fe(3f)格点位置;根据第一性原理对能态的计算发现,不考虑磁性时不同格点P的pDOS未占据态电子结构与P-K近边吸收谱实验相符合;与考虑铁磁性Fe2P的DOS相比较后结果显示Fe2P的磁性主要来源于Fe(3g)格点,铁磁性Ni2P计算的Ni不同格点原子磁矩均接近于0,与它一般显顺磁性结论相一致.  相似文献   

18.
聚(3-己基噻吩)(P3HT)与富勒烯(C_(60))(或其衍生物)形成的有机复合薄膜(P3HT:C_(60))具有室温铁磁性,但如何进一步提高其磁性能以及探究薄膜结构和磁性质的联系尚未见报道.本文采用强磁场下的溶液相沉积方法制备P3HT:C_(60)薄膜,并利用超导量子干涉磁强计、电子自旋共振谱和紫外-可见光吸收谱,研究了强磁场诱导对薄膜铁磁性和微结构的影响.发现其室温铁磁性有显著提高,饱和磁化强度较未加磁场生长的样品增大一个数量级,并且显示较高的居里温度(大于400K).薄膜结构分析发现,强磁场诱导引起P3HT分子链间堆积有序增强和结晶度的提高.这将增强体异质结薄膜内P3HT分子与C_(60)分子间的电荷转移,因而可能是P3HT:C_(60)薄膜室温铁磁性增强的一个重要原因.  相似文献   

19.
采用溶胶凝胶法制备了Ti1-xCrxO2±δ体系系列样品.利用扫描电子显微镜(SEM),X射线光电子能谱(XPS),粉末X射线衍射分析(XRD)方法研究了Ti1-xCrxO2±δ系列样品的颗粒尺寸、形貌、组分化学态、相关系和固溶区范围;并利用超导量子干涉磁强计对样品的磁性能进行了研究.采用Rietveld结构精修的方法研究了Cr的不同掺杂量对TiO2晶体结构的影响,研究表明,1000℃烧结的样品的固溶区范围是x=0—0.03,为金红石单相;随着Cr掺杂量的增加,金红石相晶胞参数规律性地减小;当x>0.03,为金红石相和CrO2相两相共存.综合XRD和磁性测量结果,500℃烧结的样品的固溶区范围是x=0—0.02,为锐钛矿单相;随着Cr掺杂量的增加,锐钛矿相晶胞参数规律性地减小;当x≥0.04,为锐钛矿相和绿铬矿相(Cr2O3)两相共存.XPS实验结果表明,500℃和1000℃退火的样品中Cr都是以Cr 3和Cr 6两种化学态存在,1000℃烧结的样品中可能有更多的Cr3 转化为Cr6 .根据M-H和M-T曲线的测试结果发现,本文500℃烧结的Ti1-xCrxO2±δ体系样品当x=0—0.02时,为室温铁磁性.当x≥0.04时,由铁磁相和顺磁相所组成,在低温下有较强的铁磁性;室温下主要是顺磁相,铁磁相只占据很小的体积分数.  相似文献   

20.
运用第一性原理的方法研究了锐钛矿相TiO_2中O空位(V_o)和Ti空位(V_(Ti))的电子结构和磁学性质.计算结果表明,单独的V_o并不会诱发局域磁矩,V_(Ti)可以产生大小为4μB(1μ=9.274×10~(-21)emu,CGS)的局域磁矩,主要分布在其周围的0原子上.这两种缺陷产生局域磁矩的原因在文中做了详细的介绍.此外,由两个V_(Ti)诱发的局域磁矩之间的磁耦合相互作用为铁磁耦合,其交换耦合系数J_0为88.7 meV,意味着V_(Ti)间的铁磁耦合可以持续到室温.虽然V_o并不会产生局域磁矩,但是引入V_o可以进一步提升两个V_(Ti)之间的耦合强度,这可以对非掺杂锐钛矿结构的TiO_2体系中铁磁性的来源作出解释:V_(Ti)产生了局域磁矩,而V_o增强了V_(Ti)间长程的铁磁耦合相互作用.此外,还提出了局域磁矩之间耦合的第二类直接交换作用模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号