首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bistable reaction–diffusion equations are known to admit one-dimensional travelling waves which are globally stable to one-dimensional perturbations—Fife and McLeod [7]. These planar waves are also stable to two-dimensional perturbations—Xin [30], Levermore-Xin [19], Kapitula [16]—provided that these perturbations decay, in the direction transverse to the wave, in an integrable fashion. In this paper, we first prove that this result breaks down when the integrability condition is removed, and we exhibit a large-time dynamics similar to that of the heat equation. We then apply this result to the study of the large-time behaviour of conical-shaped fronts in the plane, and exhibit cases where the dynamics is given by that of two advection–diffusion equations.   相似文献   

3.
4.
We are concerned with a system of nonlinear partial differential equations modeling the Lotka–Volterra interactions of predators and preys in the presence of prey-taxis and spatial diffusion. The spatial and temporal variations of the predator's velocity are determined by the prey gradient. We prove the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. The linearized stability around equilibrium is also studied. A finite volume scheme is build and numerical simulation show interesting phenomena of pattern formation.  相似文献   

5.
In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again. Another important feature in the model is that the mobility for each species is allowed to be dependent upon both the location and time. With the whole population assumed to be susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–diffusion system. We prove that the nonlinear system has a unique solution globally in any space dimension under some natural conditions on the model parameters and the given data. Moreover, the long-time behavior and stability analysis for the solutions are carried out rigorously. In particular, we characterize the precise conditions on variable parameters about the stability or instability of all steady-state solutions. These new results provide the answers to several open questions raised in the literature.  相似文献   

6.
Semi-analytical solutions for cubic autocatalytic reactions are considered in a circularly symmetric reaction–diffusion annulus. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations and analyzed to obtain semi-analytical results for this novel geometry. Singularity theory is used to determine the regions of parameter space in which the different types of steady-state diagram occur. The region of parameter space, in which Hopf bifurcations can occur, is found using a degenerate Hopf bifurcation analysis. A novel feature of this geometry is the effect, of varying the width of the annulus, on the static and dynamic multiplicity. The results show that for a thicker annulus, Hopf bifurcations and multiple steady-state solutions occur in a larger portion of parameter space. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions of the governing partial differential equations.  相似文献   

7.
8.
9.
A mathematical model for Proteus mirabilis colonies is considered in the framework of transformation groups. New solutions via classical and non-classical symmetries are obtained.  相似文献   

10.
We find conditions for the bifurcation of periodic spatially homogeneous and spatially inhomogeneous solutions of a three-dimensional system of nonlinear partial differential equations describing a soil aggregate model. We show that the transition to diffusion chaos in this model occurs via a subharmonic cascade of bifurcations of stable limit cycles in accordance with the universal Feigenbaum–Sharkovskii–Magnitskii bifurcation theory.  相似文献   

11.
This paper studies the solutions of a reaction–diffusion system with nonlinearities that generalize the Lengyel–Epstein and FitzHugh–Nagumo nonlinearities. Sufficient conditions are derived for the global asymptotic stability of the solutions. Furthermore, we present some numerical examples.  相似文献   

12.
The present work is devoted to the stability and attractivity analysis of a nonlocal delayed reaction–diffusion equation (DRDE) with a non-monotone bistable nonlinearity that describes the population dynamics for a two-stage species with Allee effect. By the idea of relating the dynamics of the nonlinear term to the DRDE and some stability results for the monostable case, we describe some basin of attractions for the DRDE. Additionally, existence of heteroclinic orbits and periodic oscillations are also obtained. Numerical simulations are also given at last to verify our theoretical results.  相似文献   

13.
This Note is devoted to the analysis of the null controllability of a nonlinear reaction–diffusion system, approximating a parabolic–elliptic system, modeling electrical activity in the heart. The uniform, with respect to the degenerating parameter, null controllability of the approximating system by a single control force acting on a subdomain is shown. The proof needs a precise estimate with respect to the degenerating parameter and it is done combining Carleman estimates and energy inequalities.  相似文献   

14.
15.
Intraguild predation is added to a mathematical model of competition between two species for a single nutrient with internal storage in the unstirred chemostat. At first, we established the sharp a priori estimates for nonnegative solutions of the system, which assure that all of nonnegative solutions belong to a special cone. The selection of this special cone enables us to apply the topological fixed point theorems in cones to establish the existence of positive solutions. Secondly, existence for positive steady state solutions of intraguild prey and intraguild predator is established in terms of the principal eigenvalues of associated nonlinear eigenvalue problems by means of the degree theory in the special cone. It turns out that positive steady state solutions exist when the associated principal eigenvalues are both negative or both positive.  相似文献   

16.
In this paper, we study the long-time behavior of solutions of a reaction–diffusion model in a one-dimensional river network, where the river network has two branches, and the water flow speeds in each branch are the same constant β. We show the existence of two critical values c0 and 2 with 0<c0<2, and prove that when c0β<2, the population density in every branch of the river goes to 1 as time goes to infinity; when 2<β<c0, then, as time goes to infinity, the population density in every river branch converges to a positive steady state strictly below 1; when |β|2, the species will be washed down the stream, and so locally the population density converges to 0. Our result indicates that only if the water-flow speed is suitably small (i.e., |β|<2), the species will survive in the long run.  相似文献   

17.
We consider a reaction–diffusion–ODE quiescent model in which the species can switch between mobile and immobile categories. We assume that the population inhabits a bounded region and study how its dynamics depend on the parameters describing switching rates and local population dynamics. Our results suggest that the transfer displays a stabilizing effect and inhibits the generation of spatial periodic solutions. A new method to obtain global stability and dissipative structure is also explored by constructing Lyapunov functionals to overcome the loss of compactness.  相似文献   

18.
19.
This paper is devoted to the study of the spreading speeds of a partially degenerate reaction–diffusion system with monostable nonlinearity in a periodic habitat. We first obtain sufficient conditions for the existence of principal eigenvalues in the case where solution maps of the associated linear systems lack compactness, and prove a threshold type result on the global dynamics for the periodic initial value problem. Then we establish the existence and computational formulae of spreading speeds for the general initial value problem. It turns out that the spreading speed is linearly determinate.  相似文献   

20.
Spatial diffusion and time delay are two main factors in biological and chemical systems. However, the combined effects of them on diffusion systems are not well studied. As a result, we investigate a nonlinear diffusion system with delay and obtain the existence of the periodic solutions using coincidence degree theory. Moreover, two numerical examples confirm our theoretical results. The obtained results can also be applied in other related fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号