首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
TiO2光催化反应及其在废水处理中的应用   总被引:10,自引:0,他引:10  
TiO2 多相光催化能利用太阳能有效降解多种对环境有害的污染物, 使有害物质矿化为CO2、H2O 及其它无机小分子物质。本文综述了TiO2光催化的机理, 提高光催化能力的途径, 多种具有代表性污染物的光催化降解处理方法,以及目前尚存在的一些问题,扼要介绍了近年来TiO2光催化反应及其在废水处理中应用的研究进展及应用前景。  相似文献   

2.
Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO2), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO2 and its applications are presented.  相似文献   

3.
TiO2 photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO2 photocatalysis. In this review, recent developments in the area of TiO2 photocatalysis research, in terms of new materials from a structural design perspective, have been summarized. The dimensionality associated with the structure of a TiO2 material can affect its properties and functions, including its photocatalytic performance, and also more specifically its surface area, adsorption, reflectance, adhesion, and carrier transportation properties. We provide a brief introduction to the current situation in TiO2 photocatalysis, and describe structurally controlled TiO2 photocatalysts which can be classified into zero-, one-, two-, and three-dimensional structures. Furthermore, novel applications of TiO2 surfaces for the fabrication of wettability patterns and for printing are discussed.  相似文献   

4.
TiO2 has received tremendous attention owing to its potential applications in the field of photocatalysis for solar fuel production and environmental remediation. This review mainly describes various modification strategies and potential applications of TiO2 in efficient photocatalysis. In past few years, various strategies have been developed to improve the photocatalytic performance of TiO2, including noble metal deposition, elemental doping, inorganic acids modification, heterojunctions with other semiconductors, dye sensitization and metal ion implantation. The enhanced photocatalytic activities of TiO2-based material for CO2 conversion, water splitting and pollutants degradation are highlighted in this review.  相似文献   

5.
TiO2-based photocatalysis has become a viable technology in various application fields such as (waste)water purification, photovoltaics/artificial photosynthesis, environmentally friendly organic synthesis and remediation of air pollution. Because of the increasing impact of bad air quality worldwide, this review focuses on the use and optimization of TiO2-based photocatalysts for gas phase applications. Over the past years various specific aspects of TiO2 photocatalysis have been reviewed individually. The intent of this review is to offer a broad tutorial on (recent) trends in TiO2 photocatalyst modification for the intensification of photocatalytic air treatment. After briefly introducing the fundamentals of photocatalysis, TiO2 photocatalyst modification is discussed both on a morphological and an electronic level from the perspective of gas phase applications. The main focus is laid on recent developments, but also possible opportunities to the field. This review is intended as a solid introduction for researchers new to the field, as well as a summarizing update for established investigators.  相似文献   

6.
Semiconductor photocatalysis is a process that harnesses light energy in chemical conversions. In particular, its applications to environmental remediation have been intensively investigated. The characteristics of TiO2, the most popular photocatalyst, is briefly described and selected studies on the degradation/conversion of various recalcitrant pollutants using pure and modified TiO2 photocatalysts, which were carried out in this group, are reviewed. Photocatalytic reactions are multi-phasic and take place at interfaces of not only water/TiO2 and air/TiO2 but also solid/TiO2. Examples of photocatalytic reactions of various organic and inorganic substrates that are converted through the photocatalytic oxidation or reduction are introduced. TiO2 has been modified in various ways to improve its photocatalytic activity. Surface modifications of TiO2 that include surface platinization, surface fluorination, and surface charge alteration are discussed and their applications to pollutants degradation are also described in detail.  相似文献   

7.
TiO2 has gained tremendous attention as a cutting-edge material for application in photocatalysis. The performance of TiO2 as a photocatalyst depends on various parameters including morphology, surface area, and crystallinity. Although TiO2 has shown good catalytic activity in various catalysis systems, the performance of TiO2 as a photocatalyst is generally limited due to its low conductivity and a wide optical bandgap. Numerous different studies have been devoted to overcome these problems, showing significant improvement in photocatalytic performance. In this study, we summarize the recent progress in the utilization of TiO2 for the photocatalytic hydrogen evolution reaction (HER). Strategies for modulating the properties toward the high photocatalytic activity of TiO2 for HER including structural engineering, compositional engineering, and doping are highlighted and discussed. The advantages and limitations of each modification approach are reviewed. Finally, the remaining obstacles and perspective for the development of TiO2 as photocatalysts toward high efficient HER in the near future are also provided.  相似文献   

8.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

9.
Photocatalysis provides a cost effective method for both renewable energy synthesis and environmental purification. Photocatalytic activity is dominated by the material design strategy and synthesis methods. Here, for the first time, we report very mild and effective photo‐deposition procedures for the synthesis of novel Fe2O3–TiO2 nanocomposites. Their photocatalytic activities have been found to be dramatically enhanced for both contaminant decomposition and photoelectrochemical water splitting. When used to decompose a model contaminant herbicide, 2,4‐dichlorophenoxyacetic acid (2,4‐D), monitored by both UV/Vis and total organic carbon (TOC) analysis, 10 % Fe–TiO2–H2O displayed a remarkable enhancement of more than 200 % in the kinetics of complete mineralisation in comparison to the commercial material P25 TiO2 photocatalyst. Furthermore, the photocurrent is nearly double that of P25. The mechanism for this improvement in activity was determined using density functional theory (DFT) and photoluminescence. These approaches ultimately reveal that the photoelectron transfer is from TiO2 to Fe2O3. This favours O2 reduction which is the rate‐determining step in photocatalytic environmental purification. This in situ charge separation also allows for facile migration of holes from the valence band of TiO2 to the surface for the expected oxidation reactions, leading to higher photocurrent and better photocatalytic activity.  相似文献   

10.
The in situ open‐circuit voltages (Voc) and the in situ photoconductivities have been measured to study electron behavior in photocatalysis and its effect on the photocatalytic oxidation of methanol. It was observed that electron injection to the conduction band (CB) of TiO2 under light illumination during photocatalysis includes two sources: from the valence band (VB) of TiO2 and from the methanol molecule. The electron injection from methanol to TiO2 is slower than that directly from the VB, which indicates that the adsorption mode of methanol on the TiO2 surface can change between dark and illuminated states. The electron injection from methanol to the CB of TiO2 leads to the upshift of the Fermi level of electrons in TiO2, which is the thermodynamic driving force of photocatalytic oxidation. It was also found that the charge state of nano‐TiO2 is continuously changing during photocatalysis as electrons are injected from methanol to TiO2. Combined with the apparent Langmuir–Hinshelwood kinetic model, the relation between photocatalytic kinetics and electrons in the TiO2 CB was developed and verified experimentally. The photocatalytic rate constant is the variation of the Fermi level with time, based on which a new method was developed to calculate the photocatalytic kinetic rate constant by monitoring the change of Voc with time during photocatalysis.  相似文献   

11.
《中国化学快报》2023,34(3):107523
The increasing pollution and human demand for a cleaner environment have made achieving the environmental sustainability a current research focus. As a “green” technology, semiconductor photocatalysis is of great significance to the environmental purification. Benefiting from the unique anisotropic crystal structure and electronic properties, layered photocatalytic nanomaterials show great potential for efficient photocatalytic environmental treatment. This review comprehensively summarizes the recent progress on layered photocatalytic nanomaterials for oxidation or reduction of pollutants in water and air along with the basic understanding of related mechanisms and developments in this field. First, the existing diversified layered photocatalysts are classified, and their different synthesis and modification strategies are discussed in detail to provide a comprehensive view of the material design that affects their photocatalytic performance. Subsequently, the extensive applications of the above-mentioned layered photocatalytic nanomaterials in environmental fields are systematically summarized, including photooxidation of water and air pollutants, and photoreduction of heavy metal pollutants, NO3?, BrO3? and CO2. Finally, based on the current research achievements in layered photocatalysts for environmental remediation, the future development direction and challenges are proposed.  相似文献   

12.
TiO2-mediated photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including photoelectrochemical conversion, self-cleaning surfaces, and especially water purification systems. The dimensionality of the structure of a TiO2 material can affect its properties, functions, and more specifically, its photocatalytic performance. In this work, the photocatalytic inactivation of Gram-negative Escherichia coli using three photocatalysts, differing in their structure and other characteristics, was studied in a batch reactor under UVA light. The aim was to establish the disinfection efficiency of solid TiO2 compared with that of suspended catalysts, widely considered as reference cases for photocatalytic water disinfection. The bacterial inactivation profiles obtained showed that: (1) the photoinactivation was exclusively related to the quantity of photons retained per unit of treated volume, irrespective of the characteristics of the photocatalyst and the emitted light flux densities; (2) across the whole UV light range studied, each of the photocatalytic solids was able to achieve more than 2 log bacterial inactivation with less than 2 h UV irradiation; (3) none of the used catalysts achieved a total bacterial disinfection during the treatment time. For each of the catalysts the quantum yield has been assessed in terms of disinfection efficiency, the 2D material showed almost the same performance as those of suspended catalysts. This catalyst is promising for supported photocatalysis applications.  相似文献   

13.
Recent advances in heterogeneous TiO2 photocatalysis   总被引:1,自引:0,他引:1  
Current progress in the area of photocatalysis is presented, particularly regarding technological applications. Highly efficient TiO2 films on different substrates such as tile and glass have been developed for indoor environmental clean-up. TiO2 films coated on SiO2-precoated soda lime glass showed about 80% transparency and high photocatalytic activity towards the decomposition of thin oil films. A novel phenomenon, superhydrophilicity, has been observed on these transparent TiO2 coatings. In addition, we have made use of a microelectrode system to monitor oxidation and reduction products separately. The mechanistic and kinetic aspects of TiO2 photocatalysis are discussed.  相似文献   

14.
《中国化学快报》2021,32(11):3265-3276
The efficient utilization of solar energy through photocatalysis is ideal for solving environmental issues and the development sustainable future. BiOBr-based semiconductors possess unique narrowed bandgaps and layered structures, thereby widely studied as photocatalysts for environmental remediation. However, a little has been focused on the comprehensive reviewing of BiOBr despite its extensive and promising applications. In this review, the state-of-the-art developments of BiOBr-based photocatalysts for environmental remediation are summarized. Particular focus is paid to the synthetic strategies for the control of the resulting morphologies, as well as efficient modification strategies for improving the photocatalytic activities. These include boosting the bulk phase by charge separation, enhancing the spatial charge separation, and engineering the surface states. The environmental uses of BiOBr-based photocatalysts are also reviewed in terms of purification of pollutants and CO2 reduction. Finally, future challenges and opportunities of BiOBr-based materials in photocatalysis are discussed. Overall, this review provides a good basis for future exploration of high-efficiency solar-driven photocatalysts for environmental sustainability.  相似文献   

15.
Developing efficient and cheap photocatalysts that are sensitive to indoor light is promising for the practical application of photocatalysis technology. Here, N-doped TiO2 photocatalyst with loaded Cu crystalline cocatalyst is synthesized by a simple one-pot method. The structure is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy analysis, which exhibit that Cu metal nanocrystalline is uniformly deposited on the surface of N-doped TiO2 material. UV-Vis absorption spectra illustrate that the modified samples possess favorable visible light absorption properties and suppressed-electron hole separation. The as-fabricated Cu-loaded N-TiO2 materials show high activity in photocatalytic decomposing isopropanol and inactivating E. coli under the irradiation of a household white LED lamp. The developed synthetic strategy and photocatalytic materials reported here are promising for indoor environment purification.  相似文献   

16.
Recently, it has been proven that directional flow of photogenerated charge carriers occurs on specific facets of TiO2 nanocrystals. Herein, we demonstrate that the photocatalytic activity of anatase TiO2 nanocrystals in both photoreduction and photooxidation processes can be enhanced by selectively depositing Pt nanoparticles on the {101} facets, which strengthens spontaneously surface‐induced separation between photogenerated electrons and holes in the photocatalysis process. An optimal ratio of the oxidative {001} facets to the reductive {101} facets exists with regard to the photocatalysis of the faceted TiO2 nanocrystals, and this is crucial for balancing the recombination and redox reaction rates of photogenerated electrons and holes. The present work might help us gain deeper insight into the relation between the specific surface of semiconductor photocatalysts and their photocatalytic activities and provides us with a new route to design photocatalysts with high photocatalytic activity.  相似文献   

17.
Attaching π-conjugated molecules onto TiO2 can form surface complexes that could capture visible light. However, to make these TiO2 surface complexes durable, integrating 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or its analogues as a redox mediator with photocatalysis is the key to constructing selective chemical transformations. Herein, sodium 6,7-dihydroxynaphthalene-2-sulfonate (DHNS) was obtained by extending the π-conjugated system of catechol by adding a benzene ring and a substituent sodium sulfonate (−SO3Na+). The DHNS−TiO2 showed the best photocatalytic activity towards the blue light-induced selective aerobic oxidation of benzylamine. Compared to TEMPO, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) could rise above 70% in conversion of benzylamine over the DHNS−TiO2 photocatalyst. Eventually, a wide range of amines could be selectively oxidized into imines with atmospheric O2 by cooperative photocatalysis of DHNS−TiO2 with 4-amino-TEMPO. Notably, superoxide (O2•−) is crucial in coupling the photocatalytic cycle of DHNS−TiO2 and the redox cycle of 4-amino-TEMPO. This work underscores the design of surface ligands for semiconductors and the selection of a redox mediator in visible light photocatalysis for selective chemical transformations.  相似文献   

18.
The application of electrochemically enhanced photocatalysis in air treatment using a Nafion-based photoelectrochemical cell and TiO2/WO3 photoanodes for organic vapor photooxidation under both UV and visible light irradiation is briefly presented. In that direction, the obtained results regarding the preparation and characterization of the TiO2/WO3 photoanodes with enhanced photocatalytic activity are reviewed. Particular emphasis is given in the comparison of the photocatalytic behavior of bilayer TiO2/WO3 coatings, electrosynthesized on stainless steel mesh and powder C + mixed (WO3 + TiO2) photoanodes. The advantages of using a high surface area C + mixed (WO3 + TiO2) powder catalysts as photoanodes against their plain TiO2 + C and WO3 + C analogues are discussed.  相似文献   

19.
徐艳  王晓辉  李靖  宋明  周俊 《化学通报》2016,79(10):914-920
等离子体技术在材料制备和改性方面的优势得到众多研究者的认可。Ti O2具有化学稳定性高、氧化活性强、生产成本低等优势,被广泛应用于太阳能电池和光催化领域。本文综述了近年来介质阻挡放电等离子体在强化制备Ti O2光催化材料方面的研究成果,包括等离子体辅助制备Ti O2光催化薄膜和Ti O2的等离子体法掺杂两个方面,并分析了其作用机理。从目前的研究成果来看,等离子体技术制得的Ti O2光催化材料具有更好的均匀性和催化活性,这主要得益于等离子体中的高能电子,一方面,Ti O2粒子吸附电子,彼此之间产生静电场的斥力作用,可以抑制颗粒的团聚,另一方面,电子的强还原能力,能够打断Ti-O键,形成氧空位,从而提高其催化性能。  相似文献   

20.
Recently, environmental disruption is proceeding on a global scale through the consumption of huge amounts of fossil fuels and the emission of various chemical substances. However, these substances resist bio-treatment. TiO2 generates electrons and holes by irradiation with light. Most organic micro-pollutants, including dioxins, are decomposed into carbon dioxide and water by the effect of the holes with high oxidative potential. By using such a photocatalytic reaction, various applications are feasible for environmental cleanup. In general, TiO2 powder has been utilized as photocatalyst, although TiO2 powder photocatalyst has several disadvantages: (1) it is difficult to handle, (2) photocatalytic reaction is slow and it takes a lot of time for treatment and (3) it is difficult to apply to plastics and textiles, because the photocatalyst decomposes them. We have developed a photocatalyst suitable for practical use and have developed high-activity photocatalysts such as TiO2 photocatalytic transparent film, photocatalytic silica-gel, apatite-coated TiO2 photocatalyst usable for plastics and textiles, photocatalytic paper, photocatalytic blue charcoal and photocatalytic oxygen scavenger. The application of these high-activity photocatalysts has been studied in deodorization, anti-bacterial, self-cleaning, anti-stain, water treatment, air purification such as photocatalytic decomposition of dioxins and VOC, and NO x removal. Now various photocatalytic articles using these new photocatalyst materials are on the market in Japan. Photocatalytic technology can create many valuable products for environmental use all over the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号