首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photochromic diarylethenes were deemed to be one of the most promising molecular building blocks for photoresponsive materials. This review gives a brief summary to the recent progress of studies of diarylethenes in supramolecular systems, focusing on their applications in biological systems, photo-responsive mechanical materials and photo-responsive chemosensors.  相似文献   

2.
The use of light to control chemical and biological systems with the advantages of high speed and spatiotemporal precision offers many intriguing possibilities. The field of photoresponsive molecular switches for biotechnology is emerging as a fascinating area of research for their great potential in biomedical applications as smart triggers. Here recent development of photoresponsive molecular switches for biotechnology is reviewed, where the fabrication, physicochemical properties and applications in biotechnology are highlighted, especially focused on controlling the immobilization of biomolecules on surfaces and the conformation of biomolecules by the photoswitches.  相似文献   

3.
Bio-inspired chemistry based on photoresponsive molecules is a rapidly developing new strategy to mimic the function of various biological systems. The interaction of electromagnetic radiation with molecular systems is ideally suited for the control and powering of dynamic processes at the speed of light. Besides typical applications in artificial photosynthesis, many other aspects, such as the catalytic turnover of substrates or the controlled release or uptake of small bioactive molecules, are readily verified with light-driven model systems. The potential of this novel approach in biomimetic chemistry is briefly explored in this concept article.  相似文献   

4.
Since the first generation of molecular machines including photoresponsive crown ethers and its analogues was reported by Shinkai et al., a huge number of molecular machines exhibiting dynamic chemical and physical functions have been designed and developed. On the other hand, non-viral vectors are desired to possess conflicting properties to associate with DNA until reaching the nucleus as their final destination and dissociate from DNA there. In other words, non-viral vectors should work as a sort of molecular machinery. To overcome this dilemma, recently, much attention is focused on the development of the intelligent vectors, also called as ‘stimuli responsive vectors’ working as molecular machines. In this review, stimulus responsive gene delivery systems in which some structural factors and/or physiological properties are regulated in response to extracellular signals such as redox, pH, ultrasound, light, temperature, etc. are introduced as a new generation of non-viral vectors. These extracellular signals such as ultrasound, light, and temperature can be potent stimuli capable of site-, timing-, and duration-specific gene expression. This is a paper selected for “HGCS Japan Award of Excellence 2006”.  相似文献   

5.
Azo-based compounds are a class of switchable systems that have been widely investigated. Furthermore, they are also important for the construction of macrocycles with photoresponsive characteristics. In recent years, there have been many reports describing versatile photoswitchable azo-macrocycles. In addition, the process of photoisomerisation has also been applied to the construction of many types of functionalised molecular machines, such as those required for host–guest chemistry, molecular machines and self-assembly systems. In this review, we summarise the recent progress of azo-macrocycles in molecular structure and functionalisation.  相似文献   

6.
A semibiological molecular machine with an implemented "AND" logic gate was developed, which was capable of controlling the folding process of proteins in response to ATP and light as input stimuli. The molecular design made use of a genetically engineered chaperonin GroEL bearing, at both entrance parts of its cylindrical cavity, cysteine residues, which were functionalized by an azobenzene derivative to construct photoresponsive mechanical gates (azo-GroEL). This engineered chaperonin trapped denatured green fluorescent protein (GFP(denat)) and prohibited its refolding. However, when hosting azo-GroEL detected ATP (input stimulus 1) and UV light (input stimulus 2) at the same time, it quickly released GFP(denat) to allow its refolding. In contrast, reception of either input stimulus 1 or 2 resulted in only very slow or no substantial refolding of GFP(denat). Implementation of such "AND" logic gate mechanisms in mechanically driven biomolecular systems is an important step toward the design of secured drug delivery systems.  相似文献   

7.
Photoresponsive molecular systems are essential for molecular optoelectronic devices, but most molecular building blocks are non‐photoresponsive. Employed here is a photoinduced proton transfer (PIPT) strategy to control charge transport through single‐molecule azulene junctions with visible light under ambient conditions, which leads to a reversible and controllable photoresponsive molecular device based on non‐photoresponsive molecules and a photoacid. Also demonstrated is the application of PIPT in two single‐molecule AND gate and OR gate devices with electrical signal as outputs.  相似文献   

8.
9.
In living organisms, many biological processes are inextricably linked with light, such as the photosynthesis systems and rhodopsin. Hence, construction of light-sensitive biomimetic-nanochannels, which can realize the functions of cells and other membrane structures with high degree of spatial and temporal control, is particularly attractive and challenging. As a cornerstone of light-sensitive nanochannels, the photoresponsive materials are a big family and at their mature stage after several decades of development, which can provide different strategies to construct biomimetic photoresponsive nanochannels. In this review, we mainly summarize the construction and applications of photoresponsive nanochannels on the basis of various photoresponsive materials. The construction of photoresponsive nanochannels can be classified into four categories: photoresponsive inorganic nanochannels based on inorganic-compound-based photonic sensitive materials; photoresponsive organic nanochannels based on organic-compound-based photonic sensitive materials; photoresponsive polymers nanochannel based on photoresponsive polymers materials and potential photoresponsive nanochannels based on other photoresponsive materials. After introducing the construction of photoresponsive nanochannels, the review highlights some of the most recent applications of photoresponsive nanochannels in separation, energy conversion and storage, drug delivery and so on.  相似文献   

10.
The review presents the results of the development of an universal approach to the molecular design of light-sensitive and light-emitting nanosized systems with desired properties based on unsaturated and macrocyclic compounds. Within the same class of compounds, various nanosized systems were constructed using a limited number of structural fragments. These nanosized systems are susceptible to all main types of photoprocesses, such as fluorescence, photodissociation, photoisomerization, photocycloaddition, photoelectrocyclization, excimer formation, charge-transfer complex formation, the formation of the twisted intramolecular charge-transfer state (TICT state), and the electron transfer. The use of photostructural transformations for controlling the complexation and mechanical movements in molecular devices and machines is discussed. The prospects of application of the new strategy are exemplified by the design of the previously unknown types of molecular switches, materials for optical chemosensors, optical data recording and storage media, photoswitchable molecular devices, and photocontrolled molecular machines. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1299–1323, July, 2008.  相似文献   

11.
在生命体中,很多生物过程都和光息息相关,例如光合作用过程和视觉感受系统等,而这些过程大都由生命体中对光敏感的蛋白质离子通道主导。近年来,受这些蛋白质离子通道的启发,具有光响应性的仿生智能固态纳米孔道广受关注。光响应纳米孔道具有灵活的空间和时间可控性,除了和生命过程息息相关,还在能源存储与转化、药物可控释放和分离等方面显示了巨大的应用前景。本综述主要从材料属性出发阐述光响应仿生智能纳米孔道的构筑和分类,并对其应用进行总结和展望。  相似文献   

12.
Light is a nearly ideal stimulus for molecular systems. It delivers information encoded in the form of wavelengths and their intensities with high precision in space and time. Light is a mild trigger that does not permanently contaminate targeted samples. Its energy can be reversibly transformed into molecular motion, polarity, or flexibility changes. This leads to sophisticated functions at the supramolecular and macroscopic levels, from light-triggered nanomaterials to photocontrol over biological systems. New methods and molecular adapters of light are reported almost daily. Recently reported applications of photoresponsive systems, particularly azobenzenes, spiropyrans, diarylethenes, and indigoids, for smart materials and photocontrol of biological setups are described herein with the aim to demonstrate that the 21st century has become the Age of Enlightenment—“Le siècle des Lumières”—in molecular sciences.  相似文献   

13.
In this paper, current progress in the area of photoresponsive surfaces with controllable wettability is reviewed, including mainly surface conversion between wetting and anti-wetting, prepared from inorganic oxides (e.g., titanium dioxide, zinc oxide, and tungsten oxide) or/and photoactive organic molecules (e.g., azobenzene, and spiropyran), and movement of liquid droplets driven by molecular machines (e.g., molecular shuttles such as rotaxanes). Photoresponsive controllable wettability originates from a transition between the bistable states of photoresponsive materials. The exploration of the basic mechanisms provides a basis for the construction of novel smart responsive surfaces.  相似文献   

14.
The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. Researchers in this field are stimulated and inspired by the outstanding progress of molecular biology that has begun to reveal the secrets of the natural nanomachines which constitute the material base of life. Like their macroscopic counterparts, nanoscale machines need energy to operate. Most molecular motors of the biological world are fueled by chemical reactions, but research in the last fifteen years has demonstrated that light energy can be used to power nanomachines by exploiting photochemical processes in appropriately designed artificial systems. As a matter of fact, light excitation exhibits several advantages with regard to the operation of the machine, and can also be used to monitor its state through spectroscopic methods. In this review we will illustrate the design principles at the basis of photochemically driven molecular machines, and we will describe a few examples based on rotaxane-type structures investigated in our laboratories.   相似文献   

15.
In recent years, biological molecules have brought about a renaissance in the development of novel responsive materials. An example of this is the development of new photoresponsive materials for the artificial regulation of chemical and biological systems. Towards this we have developed a novel enzymatic synthetic approach for covalent attachment of photoresponsive units into the RNA backbone. This involves a lipase catalyzed acylation of the 2' hydroxyl group in the ribose sugars in the RNA molecule to incorporate photo-isomerizable azobenzene groups into the RNA strands. A reverse micellar approach was used for this RNA functionalization to maintain the solubility of the nucleic acid as well as to limit the preferred hydrolysis reaction in aqueous media. The azobenzene groups incorporated in the RNA molecule show photo-isomerization behavior and can serve as optical ‘handles’ for the manipulation of the conformation of RNA. This modification of RNA using covalently attached chromophores or fluorophores is a generic approach that can be extended to other biomacromolecular matrices leading to new opportunities for biophotonic device applications.

  相似文献   

16.
A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.  相似文献   

17.
18.
The design of molecular machines is stimulated by the possibility of developing new materials with complex physicochemical and mechanical properties that are responsive to external stimuli. Condensed-phase matter with anisotropic molecular order and controlled dynamics, also defined as amphidynamic crystals, offers a promising platform for the design of bulk materials capable of performing such functions. Recent studies have shown that it is possible to engineer molecular crystals and extended solids with Brownian rotation about specific axes that can be interfaced with external fields, which may ultimately be used to design novel optoelectronic materials. Structure/function relationships of amphidynamic materials have been characterized, establishing the blueprints to further engineer sophisticated function. However, the synthesis of amphidynamic molecular machines composed of multiple "parts" is essential to realize increasingly complex behavior. Recent progress in amphidynamic multicomponent systems suggests that sophisticated functions similar to those of simple biomolecular machines may eventually be within reach.  相似文献   

19.
Building a bottom‐up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio‐temporal patterns with dissipative structures. However, it remains difficult to build such self‐organized working objects via artificial techniques. Herein, we show the first example of a square‐wave limit‐cycle self‐oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue‐light irradiation. Mechanical self‐oscillation is established by successively alternating photoisomerization processes and multi‐stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule‐based machines.  相似文献   

20.
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years. Despite the synthetic accomplishments, there remains confusion regarding the fundamental design principles by which the motions of molecules can be controlled, with significant intellectual tension between mechanical and chemical ways of thinking about and describing molecular machines. A thermodynamically consistent analysis of the kinetics of several molecular rotors and pumps shows that while light driven rotors operate by a power-stroke mechanism, kinetic asymmetry—the relative heights of energy barriers—is the sole determinant of the directionality of catalysis driven machines. Power-strokes—the relative depths of energy wells—play no role whatsoever in determining the sign of the directionality. These results, elaborated using trajectory thermodynamics and the nonequilibrium pump equality, show that kinetic asymmetry governs the response of many non-equilibrium chemical phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号