首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the enhancement effects of the double-chained cationic surfactants of n-dimethyldialkylammoniums (CH(3))(2)N(+)(C(n)H(2n+1))(2) on the permeation of anionic salicylate through excised guinea pig dorsal skin at pH 7.4. Among them, n-dimethyldidecylammonium (2C10), which seemed to form micelles, had dose-dependent enhancement effects at concentrations of more than 0.1 mM, and about a ninety-fold increase in the permeability coefficient of salicylate was observed at 2 mM. The enhancement effect of 2C10 was larger than those of single-chained cationic surfactants of n-alkyltrimethylammoniums. n-Dimethyldilaurylammonium (2C12), which seemed to form bilayer vesicles, induced about a twenty five-fold increase in the permeability coefficient. The enhancement effects of n-dimethyldialkylammoniums decreased with the increase in their alkyl chain lengths. In contrast, only slight stimulation by these cationic surfactants was observed for silicon rubber membrane permeation of salicylate. Analysis of the retention of the salicylate in the skin suggested that the double-chained cationic surfactants-induced increase in the transfer of salicylate to the skin is the main reason for the marked stimulation of the skin permeation.  相似文献   

2.
The contribution of ionized and unionized species to the overall permeation of weak electrolytes through the skin was investigated to determine the effect of pH in the vehicle on the permeability of indomethacin (IDM), as a model drug, through hairless rat skin. The permeability of IDM through polydimethylsiloxane (silicone) and poly(2-hydroxyethyl methacrylate) (pHEMA) membranes which may reflect lipid and aqueous pathway, respectively, was also measured for comparison. As the pH in the vehicle increased, there was an exponential increase in the skin permeation rate of IDM. The permeation rate of IDM through the silicone membrane was constant independent of pH, whereas that through the pHEMA membrane increased with increasing pH, similar to the skin permeation. The permeability coefficients of ionized and unionized species through the skin estimated using the skin permeation rates and solubilities of IDM at various pHs were 1.50 x 10(-7) and 2.79 x 10(-5) cm/s, respectively. These results indicated that the permeation of ionized species greatly contributed to the total permeation of IDM at higher pH, and that the total permeation rate of IDM was determined by the permeation of unionized species at lower pH. These contributions depend on the pH and pKa values and the ratio of permeability coefficient of each species. It was also confirmed that the skin has at least two kinds of permeation pathways and these two species permeate through a different pathway.  相似文献   

3.
The permeability coefficients of saturated and non-saturated vapors of benzene, hexane and cyclohexane through flat polymer membranes (low density polyethylene BRALEN FB2-30 and polyether-block-amide PEBA 4033-PE) by two different experimental techniques at 298.15 K are reported. The permeation data have been obtained using the differential flow permeameter and sorption ones by glass sorption apparatus with McBain’s spiral balance. The so-called stationary (steady) diffusion theory has been applied for evaluating the permeability coefficients from sorption (equilibrium) data and obtained values have been compared with the permeability coefficients from permeation (steady-state) measurements. In the case of relative lower vapors sorption in polymers (hexane and cyclohexane) good agreement between permeability coefficients from sorption and permeation is obtained. Hence, this paper proves the possibility to estimate the permeability coefficients of organic vapors from sorption data without need of performing the permeation experiments.  相似文献   

4.
In order to measure the contribution of lipid and pore (aqueous) pathways to the total skin permeation of drugs, and to establish a predictive method for the steady state permeation rate of drugs, the relationship between permeability through excised hairless rat skin and some physicochemical properties of several drugs were compared with those through polydimethylsiloxane (silicone) and poly(2-hydroxyethyl methacrylate) (pHEMA) membranes, as typical solution-diffusion and porous membranes, respectively. A linear relationship was found between the permeability coefficients of drugs for the silicone membrane and their octanol/water partition coefficients. For the pHEMA membrane, the permeability coefficients were almost constant independent of the partition coefficient. On the other hand, the skin permeation properties could be classified into two types: one involves the case of lipophilic drugs, where the permeability coefficient is correlated to the partition coefficient, similar to the silicone membrane; and the other involves hydrophilic drugs, where the permeability coefficients were almost constant, similar to pHEMA membrane. From the above results, the stratum corneum, the main barrier in skin, could be described as a membrane having two parallel permeation pathways: lipid and pore pathways. An equation for predicting the steady state permeation rate of drugs was derived based on this skin permeation model.  相似文献   

5.
6.
Enhancement of skin permeability of anionic diclofenac from non-aqueous vehicle isopropyl myristate (IPM) by ion-pair formation with either alkylamines or benzylamine as model cationic ions was examined in guinea pig dorsal skin. Diclofenac ion flux increased in the presence of these amines due to an increase in solubility. Maximum flux was observed in the presence of n-hexylamine, which induced 7.3-fold increase accompanied by a 45-fold increase in solubility. Permeability coefficients of the ionic form of diclofenac in the presence of benzylamine, n-hexylamine and iso-octylamine as counter ions in IPM were larger than those of the non-ionic form of diclofenac. Since the solubility of diclofenac was still limited, to obtain further enhancement of skin permeation, the effects of microemulsions as a vehicle consisting of phosphate buffered saline (PBS), isopropyl myristate (IPM), polyoxyethylene sorbitan monooleate (Tween 80) and ethanol were examined for transport of diclofenac-benzylamine ion-pairs. All microemulsion formulations tested increased diclofenac flux 4.9-fold to 10.7-fold over the value without a microemulsion accompanied by a 217-fold to 302-fold improvement in the solubility of diclofenac-benzylamine ion-pairs, but permeability coefficients were decreased 28-44 fold. Maximum enhancement was observed for a microemulsion with a ratio of PBS, IPM, ethanol and Tween 80 of 25 : 8 : 47 : 20 (w/w). The present findings suggest the usefulness of combined use of ion-pairs with microemulsions for enhancement of skin permeation of ionic drugs.  相似文献   

7.
Enhancement of skin permeability of salicylate from non-aqueous vehicle by ion-pair formation with either alkylamines or benzylamine as model cationic ions was examined in excised guinea pig dorsal skin. Solubility of salicylate in isopropyl myristate (IPM) was increased by the addition of either alkylamines or benzylamine as counter ions. The increase was more significant in the presence of amines with longer alkyl chains. Flux of salicylate increased in the presence of these amines due to the increase in the solubility. Maximum flux was observed in the presence of n-hexylamine, which induced an 11-fold increase due to 137-fold increase in solubility. Flux and permeability coefficients of salicylate in the presence of n-butylamine, n-hexylamine, iso-octylamine and benzylamine as counter ions in IPM were larger than those of the non-ionic form of salicylic acid. Flux of 3-methylsalicylate (3-CH3 substituent) and that of 5-hydroxysalicylate (5-OH substituent) were smaller than that of salicylate in the presence of n-hexylamine. After partition to the skin surface, the ion-pair is suggested to dissociate and permeate separately according to the study using lidocaine as the counter ion. Flux of salicylate increased in the presence of benzylamine as the counter ion by the addition of 15% ethanol and 15% ethanol plus 1% l-menthol due to further improvement in the solubility as well as an increase in the permeability coefficient.  相似文献   

8.
The permeation, diffusion, and sorption of dimethyl ether into a series of commercial fluoroelastomers were characterized at various pressures and temperatures. The polymers under study were based on tetrafluoroethylene and contained various amounts of other perfluorinated monomers: perfluoromethylvinylether, hexafluoropropylene, and a partially fluorinated monomer, vinylidene fluoride (VDF). These polymers were also filled with inorganic particles and cured with different techniques. The permeation rate of dimethyl ether in the elastomers examined, as well as the solubility value, increased as the content of the nonperfluorinated monomer (VDF) increased, and this was consistent with the solubility parameter theory. The diffusion coefficients, at a fixed concentration, had rather similar values for most of the elastomers examined. Both the permeability and diffusivity increased with temperature, and the corresponding activation energies were obtained for two selected polymers. The solubility of dimethyl ether, at a fixed temperature and activity, showed a linear dependence versus the weight fraction of the partially fluorinated monomer (VDF) in the polymeric matrix. The effect of the filler on the sorption and transport properties was also considered: the addition of the filler lowered the permeability and diffusivity, whereas the solubility was generally increased with respect to the crosslinked rubber. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1987–2006, 2004  相似文献   

9.
Erythrocyte membrane permeability coefficients for a series of diols have been defined by the method developed. The method is based on the physical and mathematical modeling of hypotonic hemolysis process. There have been also determined membrane permeability coefficients for erythrocytes treated with p-chloromercuribenzenesulfonic acid monosodium salt (pCMBS), which is known to block aqueous protein channels. Permeating process is shown to be conditioned both by hydrophilic/hydrophobic properties of the molecules and their geometrical parameters. The obtained results propose that, when exceeding the molecules diameter over a value of 4 A, the permeability coefficient reduces due to decreasing of flow through the aqueous protein pores of a constant size. Permeability coefficients for comparatively hydrophobic molecules are almost directly proportional to the coefficients of partition between hydrophobic and hydrophilic phases, by pointing to a lipid way of permeation of these molecules through erythrocyte membranes.  相似文献   

10.
The effect of stereoregularity on gas permeation properties of poly(methyl methacrylate) (PMMA) was investigated. The gas permeability coefficients for He, H2, O2, N2, Ar, CH4, and CO2 at 35°C near atmospheric pressure have been measured for three different PMMAs. Apparent diffusion and solubility coefficients were obtained from time lag data, and these were compared with data for a commercial PMMA previously reported. The permeability, solubility, and diffusion coefficients increase as the content of syndiotactic sequences increases. These observations are consistent with more dense packing of the isotactic form in the glassy state that stems in part from its lower glass transition temperature. The transport behavior for a 50:50 isotactic/syndiotactic blend was also studied. These so-called stereocomplexes exhibit permeation behavior comparable to other weakly interacting miscible blend systems.  相似文献   

11.
Using excised guinea pig dorsal skin, we examined the effects of three surfactants, anionic sodium dodecylsulfate (SDS), cationic n-dodecyltrimethylammonium bromide and non-ionic n-dodecyl-beta-D-maltoside, all of which commonly have an n-dodecyl group, on in vitro skin permeation of the cationic drug ketotifen. All these three surfactants increased the skin permeation of ketotifen. Among the surfactants tested, anionic SDS had the largest enhancement effects, and significantly increased the permeation at concentrations over 1 mM. The enhancement effect of the same anionic surfactant on the permeation of anionic salicylate was smaller and similar to that of cationic n-dodecyltrimethylammonium. The enhancement effects of SDS on ketotifen permeation were more marked than those of the cationic surfactant but differed from previous findings of their effects on other drugs permeation. Analysis of the retention of ketotifen in the skin suggested that SDS-induced increase in the transfer of hydrophilic ketotifen to the skin is the main reason for the marked increase in skin permeation.  相似文献   

12.
The effect of l-menthol on the skin permeability of mannitol, cortisone or indomethacin was examined by an in vitro penetration technique with hairless mouse skin. The donor solution was prepared with phosphate buffered saline, ethanol:buffered saline (20:80, v/v) or ethanol:buffered saline (20:80, v/v) containing 1% (w/v) l-menthol. Although ethanol showed little enhancing effect, l-menthol in an aqueous ethanol vehicle at pH 7.4 increased the permeability coefficients of mannitol and indomethacin by about 100 times that of the control (an aqueous vehicle) and increased that of cortisone by about 10 times. l-Menthol, however, scarcely enhanced the penetration of indomethacin at pH 3.0, the majority of the species being in unionized form. These results suggested that the menthol-ethanol-aqueous system enhanced skin permeability through a direct effect on the polar and/or lipid pathways, while the thermodynamic activity of the penetrant molecule in the delivery vehicle might also influence the effectiveness of the penetration enhancer.  相似文献   

13.
The transport of hydrochloric acid (0.001-0.1 M) and sodium dodecyl sulfate (0.001-0.1 M) has been measured through a membrane consisting of a blend of cellulose acetate butyrate and cellulose acetate hydrogen phthalate. The cellulose derivative blend is suggested to suffer an alteration in the degree of hydrophobicity when in equilibrium with sodium dodecyl sulfate (SDS) through hemimicelle formation. An increase in surface hydrophobicity of the blend when in equilibrium with SDS solution was observed by fluorescence measurements using the vibronic bands of the probe pyrene, as well as by water desorption kinetics; a decrease of the effective diffusion coefficients from 1.2 × 10−11 m2 s−1 in the absence of SDS to approximately 2 × 10−13 m2 s−1 in its presence was found. The value obtained for the mutual diffusion coefficient of HCl in the concentration range 0.001-0.1 M (D=4.2×10−14 m2 s−1) shows also that the membrane presents hydrophobic features. The flux of SDS in the blend membrane at different pH values shows two distinct permeation rates depending on the cmc. However, from the calculation of permeability coefficients at SDS concentrations below the cmc a clear decrease in P is found, whilst, at concentrations above the cmc the permeability coefficients are nearly constant, only showing a slightly increase. The diffusion coefficients of SDS in the blend increase over the whole SDS concentration range analysed and show an effective diffusion coefficient 2-3 orders of magnitude below the diffusion coefficients of SDS in aqueous solutions. This fact suggests that the only diffusing species are SDS unimers. The presence of HCl in the SDS bulk solution has the effect of increasing the permeability and diffusion coefficients. Mutual analysis of permeation and diffusion coefficients and sorption isotherms shows that, on decreasing the pH, the interactions between SDS and the polymer network decrease. This is also reflected in a clear decrease of the hydrophobic interactions between the diffusing and polymeric species, provoked by a decrease in the unimer-unimer association.  相似文献   

14.
In a series of experiments, we studied the dynamic properties of aqueous surfactant solutions of cetyltrimethylammonium bromide (CTAB) at conditions after adding different amounts of sodium salicylate (NaSal). The aggregates, present in these solutions, are elongated, wormlike micelles, which tend to form entanglement networks. The viscoelastic, gel-like samples were analyzed by means of static, dynamic, and electrophoretic light scattering techniques. We separately investigated the effects of surfactant concentration and added salt on intermicellar interactions. The electrostatic interactions between the anisometric micelles were analyzed by considering the effective dimensions of the aggregates. We calculated the Debye-Huckel lengths from experimental data of the osmotic second virial coefficient and from the diffusion second virial coefficient. It turned out that the results were in good agreement with theoretically estimated values. We also measured the zeta potential and intensity of scattered light in a large range of different salt concentrations keeping the CTAB concentration constant. We observed an isoelectric point and charge reversal of the threadlike micelles at an excess salicylate concentration of about 100 mM. The observed decrease of the zeta potential points to striking processes of counterion condensation. In these solutions, the salicylate ion acts as a cosurfactant, due to its discrepancy between polar and hydrophobic groups. We also detected a simple linear correlation between the zeta potentials and the Debye screening lengths of the surfactant solutions.  相似文献   

15.
采用在聚合物-钴卟啉(CoP)膜表面旋转涂覆氟涂料法,制备了氧/氮分离膜.研究表明,与未涂层膜相比,氟涂层膜中的CoP与氧表观结合平衡常数、膜的氧渗透系数和氧/氮选择性没有发生明显变化.随氟涂层厚度增加,氧渗透系数稍有降低,但水蒸汽渗透系数显著降低.由于氟涂层的憎水性,使涂层膜的水蒸汽渗透系数显著降低,氧载体CoP与氧结合寿命延长了4倍.  相似文献   

16.
The permeation properties of twenty newly synthesized α-alkoxyalkanoyl and α-aryloxyalkanoyl C-21 esters of standard corticosteroids: Fluocinolone acetonide, dexamethasone, triamcinolone acetonide and hydrocortisone were established using a PAMPA assay (70% silicone oil and 30% isopropyl myristate). The data were compared with parent corticosteroids with addition of mometasone furoate and hydrocortisone acetate. All newly synthesized corticosteroid C-21 esters have effective permeability coefficients higher then -6, mostly followed with high values of retention factors and low permeation. The examined compounds were grouped through relationship between obtained retention factors and permeation parameters (groups I-III). The classification confirmed group I (membrane retentions as well as permeation lower then 30%) for all corticosteroid standards except mometasone furoate, a potent topical corticosteroid which, with high membrane retention (81%) and low permeation (7.7%) fits into group III. The largest number of new synthesized corticosteroids C-21 esters, among them all fluocinolone acetonide C-21 esters, have high membrane retentions (32.4%-86.5%) and low permeations (1.3%-27.1%), fitting in group III. The classification was related to previously obtained anti-inflammatory activity data for the fluocinolone acetonide C-21 esters series. According to the PAMPA results the new synthesized esters could be considered as potential new prodrugs with useful benefit/risk ratio.  相似文献   

17.
The pure‐gas sorption, diffusion, and permeation properties of ethylbenzene in poly(dimethylsiloxane) (PDMS) are reported at 35, 45, and 55 °C and at pressures ranging from 0 to 4.4 cmHg. Additionally, mixed‐gas ethylbenzene/N2 permeability properties at 35 °C, a total feed pressure of 10 atm, and a permeate pressure of 1 atm are reported. Ethylbenzene solubility increases with increasing penetrant relative pressure and can be described by the Flory–Rehner model with an interaction parameter of 0.24 ± 0.02. At a fixed relative pressure, ethylbenzene solubility decreases with increasing temperature, and the enthalpy of sorption is −41.4 ± 0.3 kJ/mol, which is independent of ethylbenzene concentration and essentially equal to the enthalpy of condensation of pure ethylbenzene. Ethylbenzene diffusion coefficients decrease with increasing concentration at 35 °C. The activation energy of ethylbenzene diffusion in PDMS at infinite dilution is 49 ± 6 kJ/mol. The ethylbenzene activation energies of permeation decrease from near 0 to −34 ± 7 kJ/mol as concentration increases, whereas the activation energy of permeation for pure N2 is 8 ± 2 kJ/mol. At 35 °C, ethylbenzene and N2 permeability coefficients determined from pure‐gas permeation experiments are similar to those obtained from mixed‐gas permeation experiments, and ethylbenzene/N2 selectivity values as high as 800 were observed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1461–1473, 2000  相似文献   

18.
This paper studies the diffusive and sorption steps of several gases across membranes cast from poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. Chains packing effects on gas transport was investigated by conducting a parallel study on the permeation characteristics of membranes cast from hydrogenated poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. The permeability coefficients of several gases in the two membranes were measured finding that hydrogenation of the norbornene moieties decreases gas permeability. The transition states approach was used to determine the trajectories of the gases in the two types of membranes from which the diffusion coefficients were obtained. Monte Carlo techniques based on the Widom method were used to simulate gas sorption process as a function of pressure. The values of the solubility coefficients thus obtained undergo a relatively sharp drop at low pressures approaching to a constant value as pressure increases. With the exception of carbon dioxide, pretty good agreement between the experimental and simulated values of the permeability coefficient is found for the gases studied.  相似文献   

19.
The permeabilities of several water-soluble drugs through excised hairless rat skin from their aqueous suspensions were investigated by using newly designed two-chamber diffusion cells. Disodium cromoglycate, diclofenac sodium, dopamine hydrochloride, isoproterenol hydrochloride, diltiazem hydrochloride and papaverine hydrochloride were selected as water-soluble drugs. Indomethacin, a lipophilic drug, and deuterium oxide (D2O) were used for comparison. The skin permeability coefficients of these water-soluble drugs were 100--1000 times lower than that of indomethacin. Since these drugs have high solubility in the donor solution (distilled water or lactate buffer), however, the skin permeation rates, which are in general proportional to the product of skin permeability coefficient and solubility of drugs in the drug-donor compartment, were comparable to or higher than that of indomethacin (1.7 micrograms/cm2/h): the skin permeation rate of dopamine hydrochloride (458 micrograms/cm2/h) was about 300 times higher than that of indomethacin. The water-soluble drugs with lower molecular weight and higher solubility in water showed higher skin permeation rates. These results suggest that some water-soluble drugs with low molecular weight and high solubility in water might be good candidates for transdermal drug delivery.  相似文献   

20.
Plasticized films cast from ethyl cellulose were examined to evaluate the effect of the degree of substitution, DS, and the plasticizer content on the sorption and diffusion of oxygen. Sorption and permeation measurements were performed over a temperature range of 25–65°C on three different types of ethyl cellulose in the DS range 1.7–2.5 that had been plasticized with organic esters of comparatively low molecular weight. Sorption coefficients were determined by the pressure decay method, and permeability coefficients were measured independently according to ASTM D-1434-66. The diffusion coefficients were calculated assuming Fickian transport, and were compared to the values directly obtained from the evaluation of the sorption kinetics. The permeability coefficient indicates that there is a significant improvement of the barrier properties of the materials when the DS is reduced and when the plasticizer content is at the absolute minimum required. It was found that the variation in the magnitude of the permeability coefficient is related to the value of the diffusion coefficient, which is governed by the chemical composition of the mixtures. In contrast, the solubility of oxygen was determined by the physical state of the polymer matrix and increased rapidly at temperatures significantly below the glass transition temperature. Using an ergodic model, the diffusion coefficients obtained were related to the size distribution of microvoids in the materials and relative values for the diffusion coefficient were computed as a function of DS and temperature. The model calculates the concentration (number per volume) of voids that are large enough to be occupied by a penetrant molecule. It was assumed that the unoccupied volume fraction as a function of the cohesive energy density follows a Boltzmann distribution. The cohesive energy density and the unoccupied volume fraction of the polymer-plasticizer mixtures were calculated by fitting the Simha-Somcynsky equation of state to pressure-volume-temperature data. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 639–653, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号