首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of present research work was to formulate and evaluate topical gel containing tretinoin–cyclodextrin (CD) binary complex loaded into nanostructured lipid carriers (NLCs). Use of cyclodextrin and nanolipid carrier together in a system produced a synergistic effect by increasing the drug release and skin permeation, thus improving the overall therapeutic effect. Two different cyclodextrins i.e. β-CD and its water soluble polymeric derivative epichlorohydrin-β-cyclodextrin (EPI-β-CD) were used to obtain binary inclusion complex of drug-cyclodextrin (D-CD) systems by two different techniques (kneading and co-evaporation). The prepared solid complexes were characterized by FTIR, DSC, XRD etc. and the best system was selected for loading into nanolipid carriers. NLC comprising glyceryl mono stearate (GMS) and oleic acid were obtained by slightly modified emulsification evaporation method. Four different formulations of NLCs were suitability characterized for particle size, zeta potential, entrapment efficiency, drug loading and drug release. EPI-β-CD was found to be more effective than β-CD in enhancing solubility and dissolution properties of tretinoin. The most effective NLC formulation was incorporated into carbopol hydrogel which showed better permeation properties than that of the reference gel (0.1%).  相似文献   

2.
Tryptanthrin is an ancient medicine which recently was also found to have a function of downregulating multidrug resistance (MDR). However, tryptanthrin is insoluble in water, which limits its availability for delivery into cancer cells. There is a need to improve delivery systems to increase the inhibition of MDR. The aim of this study was to employ nanoparticles encapsulating tryptanthrin to improve the delivery and promote the sustained release of this drug. The approach was to encapsulate tryptanthrin in various nanoparticles, including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid emulsions (LEs). We compared the particle size and zeta potential of these nanoparticles, and evaluated the partitioning behavior of tryptanthrin in them. We also determined the release kinetics of tryptanthrin from these nanoparticles. Moreover, cellular cytotoxicity toward and uptake of tryptanthrin-loaded nanoparticles by human breast cancer cells were determined. We found that the mean particle size of NLCs was lower, and the partition coefficient was higher than those of SLNs, and an increased tryptanthrin release rate was found with the NLC delivery system. NLCs achieved the sustained release of tryptanthrin without an initial burst. In particular, the NLC-C formulation, composed of a mixture of Compritol and squalene as the core materials, showed the highest release rate and cytotoxic effect. Confocal laser scanning microscopic images confirmed drug internalization into cells which enhanced the endocytosis of the particles. These results suggested that NLCs can potentially be exploited as a drug carrier for topical or intravenous use in the future.  相似文献   

3.
Nanostuctured lipid carriers (NLC) based on mixture of solid lipids with spatially incompatible liquid lipids are a new type of lipid nanoparticles, which offer the advantage of improved drug loading capacity and release properties. In present study, stearic acid (SA) nanostuctured lipid carriers with various oleic acid (OA) content were successfully prepared by solvent diffusion method in an aqueous system. The size and surface morphology of nanoparticles were significantly influenced by OA content. As OA content increased up to 30 wt%, the obtained particles showed pronounced smaller size and more regular morphology in spherical shape with smooth surface. Compared with solid lipid nanoparticles (SLN), NLC exhibited improved drug loading capacity, and the drug loading capacity increased with increasing OA content. These results were explained by differential scanning calorimetry (DSC) investigations. The addition of OA to nanoparticles formulation resulted in massive crystal order disturbance and less ordered matrix of NLC, and hence, increased the drug loading capacity. The drug in vitro release behavior from NLC displayed biphasic drug release pattern with burst release at the initial stage and prolonged release afterwards, and the successful control of release rate at the initial stage can be achieved by controlling OA content.  相似文献   

4.
The coencapsulation of two UV filters, butyl‐methoxydibenzoylmethane (BMDBM) and octocrylene (OCT), into lipid nanocarriers was explored to develop stable cosmetic formulations with broad‐spectrum photoprotection and slow release properties. Different types of nanocarriers in various concentrations of the two UV filters were tested to find the combination with the best absorption and release properties. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been the two types of lipid nanocarriers used. The NLCs were based on either medium chain triglycerides (MCT) or squalene (Sq). The following physicochemical properties of the nanocarriers have been evaluated: particle size, morphology, zeta potential (ZP), entrapment efficiency, loading capacity, and thermal behavior. The nanocarriers have been formulated into creams containing low amounts of UV filters (2.5% BMDBM and 1% OCT). The best photoprotection results were obtained with the cream based on NLCs prepared with MCT, having a sun protection factor (SPF) of 17.2 and an erythemal UVA protection factor (EUVA–PF) of 50.8. The photostability of the encapsulated BMDBM filter was confirmed by subjecting the nanocarriers‐based creams to in vitro irradiation. The prolonged UV‐protection efficacy was coupled with a slow in vitro release of the synthetic UV filters, which followed the Higuchi release model.  相似文献   

5.
Abstract

The effects of lipid content and dilution on the properties and stability of nanostructured lipid carriers (NLCs) prepared from rambutan (Nephelium lappaceum L.) kernel fat were investigated. The β-carotene-loading capacity of the NLCs was also evaluated. NLCs containing various lipid phase concentrations (5, 10, and 15?wt%) were prepared using Tween 80 as the emulsifier with a lipid to emulsifier weight ratio of 1:0.2. The results showed that an increase in the lipid content up to 15?wt% had no effect on the zeta-potential, particle size and polydispersity index but resulted in a higher particle density. All samples showed no phase separation during storage at 25?°C for 28?days; however, the relative recrystallization index (RRI) increased. Dilution of concentrated NLC (15?wt%) to a lower lipid content (5 and 10?wt%) produced no differences in the particle characteristics and stability during storage. NLCs loaded with β-carotene at different concentrations (0, 0.5, and 1?wt% of the lipid phase) exhibited desirable characteristics and had high encapsulation efficiency (~97%) over 28?days of storage. These results demonstrated that NLC prepared from rambutan kernel fat can be used to entrap lipophilic bioactive components which could be used as ingredients in functional food products.  相似文献   

6.
This study was performed to develop solid lipid nanoparticles of water soluble drug ciprofloxacin HCl using quick solvent diffusion evaporation technique (ouzo effect). A statistical central composite rotatable design was used to study the effect of independent variables. In the subsequent step, optimized SLN were further compared with nanostructured lipid carriers and nanoemulsion for particle size, zeta potential, drug entrapment, drug release, and stability. Comparative study revealed that the drug encapsulation efficiencies were enhanced by adding the Capmul MCM C8 into the solid lipid nanoparticles. The in vitro drug release study of all three formulations showed rapid release for nanoemulsion while controlled release for SLN. Stability study of all the formulation proved that nanostructured lipid carrier and SLN could prevent the drug expulsion during the storage period. Results of the study suggested that the SLN and nanostructured lipid carriers produced by the principle of ouzo effect could potentially be exploited for better drug entrapment efficiency and controlled drug release of water soluble actives.  相似文献   

7.
Nanostructured lipid carriers (NLC) made from mixtures of solid and spatially incompatible liquid lipids were prepared by melt-emulsification. Their drug loading capacity and releasing properties of progesterone were compared with those of solid lipid nanoparticles (SLN), and the NLC prepared by solvent diffusion method. Monostearin (MS) and stearic acid (SA) were used as solid lipid, whilst the oleic acid (OA) was used as liquid lipid. Properties of carriers such as the particle size and its distribution, drug loading, drug encapsulation efficiency and drug release behavior were investigated. As a result, the drug encapsulation efficiencies were improved by adding the liquid lipid into the solid lipid of nanoparticles. The drug release behavior could be adjusted by the addition of liquid lipid, and the NLC with higher OA content showed the faster rate of drug releasing. NLC had higher efficiency of encapsulation and slower rate of drug release than those of NLC prepared by solvent diffusion method. On the other hand, the NLC with higher drug loading was obtained, though the drug encapsulation efficiency was decreased slightly due to the increase of the amount of drug. The NLC modified with polyethylene glycol (PEG) was also prepared by using polyethylene glycol monostearate (PEG-SA). It was observed that the incorporation of PEG-SA reduced the drug encapsulation efficiency, but increased the rate of drug release. A sample with almost complete drug release in 24 h was obtained by modifying with 1.30 mol% PEG-SA. It indicated that the modified NLC was a potential drug delivery system for oral administration.  相似文献   

8.
Nanostructured lipid carriers (NLC) made from mixtures of solid and spatially incompatible liquid lipids were prepared by melt-emulsification. Their drug loading capacity and releasing properties of progesterone were compared with those of solid lipid nanoparticles (SLN), and the NLC prepared by solvent diffusion method. Monostearin (MS) and stearic acid (SA) were used as solid lipid, whilst the oleic acid (OA) was used as liquid lipid. Properties of carriers such as the particle size and its distribution, drug loading, drug encapsulation efficiency and drug release behavior were investigated. As a result, the drug encapsulation efficiencies were improved by adding the liquid lipid into the solid lipid of nanoparticles. The drug release behavior could be adjusted by the addition of liquid lipid, and the NLC with higher OA content showed the faster rate of drug releasing. NLC had higher efficiency of encapsulation and slower rate of drug release than those of NLC prepared by solvent diffusion method. On the other hand, the NLC with higher drug loading was obtained, though the drug encapsulation efficiency was decreased slightly due to the increase of the amount of drug. The NLC modified with polyethylene glycol (PEG) was also prepared by using polyethylene glycol monostearate (PEG-SA). It was observed that the incorporation of PEG-SA reduced the drug encapsulation efficiency, but increased the rate of drug release. A sample with almost complete drug release in 24 h was obtained by modifying with 1.30 mol% PEG-SA. It indicated that the modified NLC was a potential drug delivery system for oral administration.  相似文献   

9.
Brinzolamide is a carbonic anhydrase inhibitor used in the eye drop form for the treatment of glaucoma. It requires frequent dosing to attain therapeutic concentration. Therefore, this study aimed to prepare sustained ocular drug delivery of brinzolamide. The objective of the study was to prepare a hydrogel loaded with a nanostructured lipid carrier (NLC) of brinzolamide. The hydrogel was prepared by a green synthesis approach using genipin as a natural crosslinking agent and polymers such as carboxymethyl chitosan and poloxamer 407. The melt emulsification-ultra sonication method was used to prepare a nanostructured lipid carrier of brinzolamide, which was loaded into a hydrogel using a swelling and loading method. The NLC formulation has shown small particle sizes of 111.20 ?± ?2.15 ?nm, polydispersity index of 0.280 ?± ?0.005 and % entrapment efficiency of 82.16% ?± ?0.14%. The NLC-loaded hydrogels of brinzolamide formulations were studied for swelling properties and showed temperature and pH-responsive swelling behavior. The optimized hydrogel formulation has been studied for in vitro drug release and showed drug release for a longer duration (24 ?h) than marketed eye drops (8 ?h). In an ex vivo study, hydrogel formulations showed transcorneal permeability 4.54 times greater than marketed eye drops. The hydrogel formulation of brinzolamide produced by the green synthesis method has shown sustained-release properties with no sign of ocular irritation. Hence, the hydrogel of brinzolamide-loaded NLC would be the potential drug delivery approach in the near future for sustained ocular drug delivery in glaucoma management.  相似文献   

10.
A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti‐inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems.  相似文献   

11.
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) coated with human serum albumin (HSA) were fabricated for formulating nevirapine (NVP). Here, NLCs contained low-melting-point oleic acid (OA) in the internal lipid phase. The results revealed that the two nanoparticles were uniformly distributed with the average diameter ranging from 145 to 180 nm. The surface HSA neutralized the positive charge of dimethyldioctadecyl ammonium bromide (DODAB) on SLNs and NLCs and reduced their zeta potential. In a fixed ratio of solid lipids, SLNs entrapped more NVP than NLCs. The incorporation of OA also reduced the thermal resistance of NLCs and accelerated the release of NVP from the nanocarriers. When incubated with DODAB-stabilized SLNs, the viability of human brain-microvascular endothelial cells (HBMECs) reduced. However, the surface HSA increased the viability of HBMECs about 10% when the concentration of SLNs was higher than 0.8 mg/mL. HSA-grafted SLNs and NLCs can be effective formulations in the delivery of NVP for viral therapy.  相似文献   

12.
The aim of this study was to develop nanostructured lipid carriers (NLC) for topical delivery of fluticasone propionate (FP) with the aim to further improve the safety profile and decrease the adverse-side effects commonly reported in topical corticotherapy. NLC are colloidal drug-carriers consisting of a blend of a solid lipid and a small amount of liquid lipid since these carriers have proved to be effective in epidermal targeting in particular of glucocorticoids. NLC consisting of glyceryl palmito-stearate, and PEG-containing medium chain triglycerides mixture, stabilised by polysorbate 80 and soybean phosphatidylcholine were prepared. A mean particle size between 380 and 408 nm and entrapment efficacy of 95% were obtained for FP-loaded NLC. The crystallinity and polymorphic phase behaviour of FP-free and FP-loaded NLC were examined by differential scanning calorimetry and wide angle X-ray diffraction. Results revealed a low-crystalline structure and confirmed the incorporation of FP into the particles. The suitability of PEG-containing liquid lipids to form the lipid matrix of NLC was also confirmed.  相似文献   

13.
The oxidative stability of encapsulated product is a critical parameter in many products from food to pharmaceutical to cosmetic industries. The overall objective of this study was to correlate differences in the distribution pattern of encapsulated material within solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) with the relative susceptibility of these materials to undergo oxidation. The distribution of an encapsulated lipid soluble dye (Nile Red) in SLNs and NLCs was quantitatively measured using fluorescence imaging. The relative susceptibility of the encapsulated material to react with free radicals generated in the aqueous phase and oxygen from the ambient environment was measured using peroxyl radical and oxygen sensitive fluorescent dyes encapsulated in the lipid phase of colloidal particles respectively. Imaging measurements demonstrate a significant exclusion of the encapsulated dye molecules from the lipid core of SLNs as compared to NLCs. Imaging results also showed significant differences in the intraparticle distribution of encapsulated dye between NLCs containing 1 and 10% liquid lipid. On the basis of these differences in distribution, we hypothesized that the relative susceptibility of encapsulated material to peroxyl radicals and oxygen would be in the order SLNs > 1% NLC > 10% NLC. Measurement of relative susceptibility of peroxyl radical sensitive dye encapsulated in SLNs and NLCs to peroxyl radicals generated in the aqueous phase validated the proposed hypotheses. However, the susceptibility of encapsulated oxygen sensitive dye to ambient oxygen was not significantly different between SLNs and NLCs. The results of this study demonstrate that difference in distribution pattern of encapsulated material within colloidal particles can significantly influence the susceptibility of encapsulated material to react with free radicals. Overall, this study demonstrates a comprehensive approach to characterize the susceptibility of encapsulated materials in colloidal particles to oxidation processes.  相似文献   

14.
Capsaicin is an active compound in chili peppers (Capsicum chinense) that has been approved for chronic pain treatment. The topical application of high-strength capsaicin has been proven to reduce pain; however, skin irritation is a major drawback. The aim of this study was to investigate an appropriate and scalable technique for preparing nanostructured lipid carriers (NLCs) containing 0.25% capsaicin from capsicum oleoresin (NLC_C) and to evaluate the irritation of human skin by chili-extract-loaded NLCs incorporated in a gel formulation (Gel NLC_C). High-shear homogenization with high intensity (10,000 rpm) was selected to create uniform nanoparticles with a size range from 106 to 156 nm. Both the NLC_C and Gel NLC_C formulations expressed greater physical and chemical stabilities than the free chili formulation. Release and porcine biopsy studies revealed the sustained drug release and significant permeation of the NLCs through the outer skin layer, distributing in the dermis better than the free compounds. Finally, the alleviation of irritation and the decrease in uncomfortable feelings following the application of the Gel NLC_C formulation were compared to the effects from a chili gel and a commercial product in thirty healthy volunteers. The chili-extract-loaded NLCs were shown to be applicable for the transdermal delivery of capsaicin whilst minimizing skin irritation, the major noncompliance cause of patients.  相似文献   

15.
Due to their unique features, most nanostructured lipid carriers (NLCs) in association with vegetable oils that exhibit UV filtering properties and bioactivity could be used in many cosmetic formulations. Therefore, in this work, a new application of pomegranate seed oil (PSO) in the cosmetic sector was developed, based on the synthesis of bioactive lipid nanocarriers loaded with various UV filters by the hot high pressure homogenization technique. To get broad spectrum photoprotection, different UVA and UVB filters have been used (Avobenzone — AVO, Octocrylen-OCT, Bemotrizinol — BEMT). The influence of the solid lipids combined with PSO on the particle size, physical stability and entrapment efficiency was investigated using 8 nanocarrier systems. An improved physical stability and an appropriate size were obtained for NLCs prepared with Emulgade, carnauba wax and PSO (e.g. ?30.9÷-36.9 mV and 160÷185 nm). NLCs showed an entrapment efficiency above 90% and assured slow release rates of UV filters, especially for BEMT (5%). The developed nanocarriers have been formulated into safe and effective sunscreens containing low amounts of synthetic UV filters coupled with a high percent of natural ingredients. The highest SPF of 34.3 was obtained for a cream comprising of 11% PSO and 3.7% BEMT
  相似文献   

16.
Advanced hybrid component development in nanotechnology provides superior functionality in the application of scientific knowledge for the drug delivery industry. The purpose of this paper is to review important nanohybrid perspectives in drug delivery between nanostructured lipid carriers (NLC) and hydrogel systems. The hybrid system may result in the enhancement of each component’s synergistic properties in the mechanical strength of the hydrogel and concomitantly decrease aggregation of the NLC. The significant progress in nanostructured lipid carriers–hydrogels is reviewed here, with an emphasis on their preparation, potential applications, advantages, and underlying issues associated with these exciting materials.  相似文献   

17.
Lipid nanoparticles, both solid lipid nanoparticles and nanostructured lipid carriers (NLC), containing tacrolimus (FK) were obtained by solvent diffusion method associated with ultrasonication using stearic acid (SA) or beeswax as solid lipid. The oleic acid was used as liquid lipid in the NLC. Lipid nanoparticles were characterized by determining the drug loading, particle size, polydispersity index (PDI) and zeta potential (ZP). Analysis by differential scanning calorimetry and X-ray diffraction were performed. Lipid nanoparticles presented nano-sized from 139 to 275 nm. The PDI results show the particles present from 0.3 to 0.5, and ZP was higher than |25| mV. Drug loading ranged of 2.3–3.2%. SA nanoparticles presented better ZP, average size and distribution. However, beeswax nanoparticles showed higher drug loading. Results suggest there are no incompatibilities between FK and the raw materials. Polymorphic modifications were not observed. The results presented show that lipid nanoparticles using both lipids were successfully obtained and may represent promising delivery system of FK in topical formulations.  相似文献   

18.
Acne vulgaris (acne) is one of the most common dermatological problems affecting adolescents and young adults. Although acne may not lead to serious medical complications, its psychosocial effects are tremendous and scientifically proven. The first-line treatment for acne is topical medications composed of synthetic compounds, which usually cause skin irritation, dryness and itch. Therefore, naturally occurring constituents from plants (phytochemicals), which are generally regarded as safe, have received much attention as an alternative source of treatment. However, the degradation of phytochemicals under high temperature, light and oxygen, and their poor penetration across the skin barrier limit their application in dermatology. Encapsulation in lipid nanoparticles is one of the strategies commonly used to deliver drugs and phytochemicals because it allows appropriate concentrations of these substances to be delivered to the site of action with minimal side effects. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising delivery systems developed from the combination of lipid and emulsifier. They have numerous advantages that include biocompatibility and biodegradability of lipid materials, enhancement of drug solubility and stability, ease of modulation of drug release, ease of scale-up, feasibility of incorporation of both hydrophilic and lipophilic drugs and occlusive moisturization, which make them very attractive carriers for delivery of bioactive compounds for treating skin ailments such as acne. In this review, the concepts of SLNs and NLCs, methods of preparation, characterization, and their application in the encapsulation of anti-acne phytochemicals will be discussed.  相似文献   

19.
In the present study the effect of process (homogenization speed) and formulation (polymer concentration, surfactant concentration, drug amount, perfluorohexane volume fraction and co-surfactant inclusion) variables on particle size, entrapment efficiency, and drug release kinetics of doxorubicin-loaded alginate stabilized perfluorohexane nanodroplets were evaluated. Particle size and doxorubicin entrapment efficiency were highly affected by formulation and process variables. In vitro release profile of doxorubicin from all formulations was an apparently biphasic release process and 7–13 % of drug released from nanodroplets after 24 h incubation in PBS, pH 7.4, depending on the nanodroplets composition but ultrasound exposure for 10 min resulted in triggered release of 85.95 % of doxorubicin fromoptimal formulation (G). The inclusion of Span 60 (0.15 %), Poloxamer 188 (0.15 %) as co-surfactants reduced the particle size of nanodroplets from 51.8 to 42.3 and 35.6 nm, respectively. The entrapment efficiency decreased for span 60, while it did not changed in the case of Poloxamer 188. Comparison of drug release kinetics demonstrated that drug release was delayed for both Span 60 and Poloxamer 188. Thus, it was concluded that the particle size, entrapment efficiency and the doxorubicin release kinetics could easily be adjusted by taking advantage of process and formulation variables.  相似文献   

20.
Palmarosa essential oil (PEO) is an alternative to synthetic fungicides to control the contamination by food-deteriorating fungi, such as Aspergillus nomius. Nonetheless, the low long-term stability and volatility hamper its utilization. Thus, this study aimed to develop nanostructured lipid carriers (NLCs) containing PEO to improve its stability and consequently prolong the activity against A. nomius. A mixture design was applied to find the best preparation conditions for antifungal activity. The characterization analyses included size measurements, zeta potential (ζ-potential), entrapment efficiency (EE), and antifungal activity (by inhibition of mycelial growth (IMG) and/or in situ test (pre-contaminated Brazil nuts) tests). The nanocarriers presented particle sizes smaller than 300 nm, homogeneous size distribution, ζ-potential of −25.19 to −41.81 mV, and EE between 73.6 and 100%. The formulations F5 and F10 showed the highest IMG value (98.75%). Based on the regression model, three optimized formulations (OFs) were tested for antifungal activity (IMG and in situ test), which showed 100% of inhibition and prevented the deterioration of Brazil nuts by A. nomius. The preliminary stability test showed the maintenance of antifungal activity and physicochemical characteristics for 90 days. These results suggest a promising system as a biofungicide against A. nomius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号