首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solvent extracts from a type of Pu-erh tea and Dian Hong black tea were characterized by Curie-point pyrolysis–gas chromatography–mass spectroscopy (CP–Py–GC/MS). The ethyl-acetate extracts from both teas showed similar CP–Py–GC/MS results, with main pyrolytic products of carbon dioxide, caffeine, o-phenols, and phthalate esters. During pyrolysis, the n-butanol extract from Pu-erh tea formed carbon dioxide (38.92% of total pyrolytic products), alkaloids (49.7%), and nitrogen oxides (8.38%), as well as a small fraction of esters. The n-butanol extract from Dian Hong tea formed mainly alcohols, amines, esters, phenols, carboxylic acids, and alkaloids. The raw theabrownin extracts (ethanol precipitates) from the two teas produced substantially different CP–Py–GC/MS results. The raw theabrownin extract from Pu-erh tea formed mostly carbon dioxide during pyrolysis, whereas the counterpart extract from Dian Hong tea formed mainly carbon dioxide (48.23%) and nitrogen oxides (35.39%). The 3.5–100 kDa fractions separated from the theabrownin extracts of the two teas showed similar CP–Py–GC/MS results, whereas the fractions <3.5 kDa and >100 kDa formed substantially different pyrolytic products. These results showed that solvent extracts from Pu-erh tea and Dian Hong tea had substantially different chemical compositions and structures. The study suggested that CP–Py–GC/MS can be used to effectively identify chemical differences between tea extracts.  相似文献   

2.
Validation of the 2-fluoro substituent as an inert steering group to control chemical glycosylation is presented. A molecular editing study has revealed that the exceptional levels of diastereocontrol in glycosylation processes by using 2-fluoro-3,4,6-tri-O-benzyl glucopyranosyl trichloroacetimidate (TCA) scaffolds are a consequence of the 2R,3S,4S stereotriad. This study has also revealed that epimerization at C4, results in a substantial enhancement in β-selectivity (up to β/α 300:1).  相似文献   

3.
The host–guest inclusion mechanism formed between β-cyclodextrin and those poorly water-soluble drug molecules has important applications in supramolecular chemistry, biology and pharmacy. In this work, the chiral recognition ability of β-cyclodextrin to one of nonsteroidal anti-inflammatory drugs, ketoprofen, has been systematically investigated using molecular dynamics and free energy simulation methods. The R- and S-enantiomers of ketoprofen were explicitly bound within the cyclodextrin cavity in our simulations, respectively. In consistent with experimental observations, tiny structural difference between two isomers could be observed. Calculated absolute binding free energies using adapted biasing force (ABF) method and MM/GBSA approach for both isomers are comparable to experimental values. Significant binding fluctuations along the MD trajectory have been observed. The free energy profiles calculated using two different approaches reveal that the ketoprofen prefers binding in the cavity with the carboxylate group facing the wider edge of β-cyclodextrin. Similar free energy profiles for two enantiomers obtained using ABF calculations indicate that it is very hard to separate and identify the chiral conjugates within the framework of the natural β-cyclodextrin.  相似文献   

4.
VuLTP1.1, a LTP1 from Vigna unguiculata, inhibits 78.1 % of the human salivary α-amylase (HSA) activity at 20 μM. We had performed a correlation study between VuLTP1.1 structure and HSA inhibitory activity and showed that two VuLTP1.1 regions are responsible for HSA inhibition. In one of them we had characterized the crucial importance of an Arg39 for inhibition. In this work, we analyzed the VuLTP1.1-HSA interaction by protein-protein docking to understand the most probable interaction model and the mechanism of HSA inhibition by VuLTP1.1. The VuLTP1.1 tertiary structure quality and refinement as well as the docking assay between VuLTP1.1 and HSA were done by bioinformatic programs. HSA inhibition occurs by direct interaction of the VuLTP1.1 with the HSA causing the obstruction of the carbohydrate biding cleft with Gibbs free energy of -18.5 Kcal/mol and the dissociation constant of 2.6E−14 M. The previously identified Arg39 of VuLTP1.1 is burrowed into the active site of the HSA and there it interacts with the Asp300 of HSA catalytic site by a hydrogen bond. We had confirmed the importance of the Arg39 of VuLTP1.1 for the HSA inhibition which interacts with the Asp300 at the HSA active site. I-2, a LTP-like peptide, presents the same HSA inhibition pattern that VuLTP1.1, which indicates that the inhibition mechanism of the LTPs towards α-amylase is very similar. For the best of our knowledge, it is the first time that the HSA inhibition mechanism was understood and described for the LTP1s using VuLTP1.1 and I-2 as prototype inhibitors.  相似文献   

5.
Natural biopolymer stabilized oil-in-water emulsions were formulated using β-lactoglobulin (β-lg), gum arabic (GA), and β-lg:GA solutions as an alternative to synthetic surfactants. Emulsions using these biopolymers and their complexes were formulated varying the biopolymer total concentration, the protein-to-polysaccharide ratio, and the emulsification protocol. This work showed that whereas β-lg enabled the formulation of emulsions at concentration as low as 0.5 (w/w)%, GA allowed to obtain emulsions at concentrations equal to or higher than 2.5 (w/w)%. In order to improve emulsion stability, β-lg and GA were complexed through strong attractive electrostatic interactions. GA solution had to be added to previously prepared β-lg emulsions in order to obtain stable emulsions. Interfacial tension and interfacial rheological measurements allowed a better understanding of the possible stabilizing mechanism. β-lg and GA both induced a very effective decrease in interfacial tension and showed interfacial elastic behaviour. In the mixed system, β-lg adsorbed at the interface and GA electrostatically bound to it, leading to the formation of a bi-layer stabilized emulsion. However, emulsion stability was not improved compared to β-lg stabilized emulsion, probably due to depletion or bridging flocculation.  相似文献   

6.
Due to the insufficient understanding of the selective oxidation mechanism of α/β-isophorones (α/β-IP) to ketoisophorone (KIP), the key features in the β-IP oxidation catalyzed by N-hydroxyphthalimide (NHPI) have been explored via theoretical calculations. β-IP is more favourable to being activated by phthalimide-N-oxyl radical (PINO˙) and peroxyl radical (ROO˙) than α-IP owing to the different C-H strengths at their reactive sites, thereby exhibiting selective product distributions. It was found that NHPI accelerates β-IP activation due to the higher reactivity of PINO˙ than ROO˙ and the equilibrium reaction between them, yielding considerable hydroperoxide (ROOH) and ROO˙. In addition, the ROOH decomposition is more favourable viaα-H abstraction by radicals than its self-dehydration and thermal dissociation. The strong exothermicity of this α-H abstraction, along with that from H-abstraction by co-yielded hot HO˙, is in favor of the straightforward formation of KIP, simultaneously leading to the isomerization of a few β-IP to α-IP and production of 4-hydroxyisophorone (HIP) and water. The proposed mechanisms, consistent with the experimental observations, allow for the deeper understanding and effective design of oxidation systems involving similar substrates or NHPI analogues that are of industrial importance.  相似文献   

7.
The identification of protein–protein interactions within their physiological environment is the key to understanding biological processes at the molecular level. However, the artificial nature of in vitro experiments, with their lack of other cellular components, may obstruct observations of specific cellular processes. In vivo analyses can provide information on the processes within a cell that might not be observed in vitro. Chemical crosslinking combined with mass spectrometric analysis of the covalently connected binding partners allows us to identify interacting proteins and to map their interface regions directly in the cell. In this paper, different in vivo crosslinking strategies for deriving information on protein–protein interactions in their physiological environment are described.  相似文献   

8.
9.
10.
Breaking the mold: Inhibition of toxic amyloid-β (Aβ) aggregates and disruption of Cu-Aβ with subsequent redox-silencing of Cu have been considered promising strategies against Alzheimer's disease. The design and proof of concept of simple peptides containing a Cu-chelating/redox-silencing unit and an Aβ-aggregation inhibition unit (β-sheet breaker) is described (see scheme).  相似文献   

11.
The aim of the present work is the investigation of the inclusion complex of nabumetone (NAB) and β-cyclodextrin (β-CD) using PM3, DFT, DFT-D and ONIOM2 methods. The results indicate that the most energetically favorable structure predicts a preference of the methoxy group to enter the cavity of β-CD from its wide rim. Consequently, the butanone moiety is positioned outside the cavity on the side of the secondary hydroxyls, with a total insertion of naphthalene group. The semi-empirical PM3 results are in good agreement with those obtained by the DFT optimization (with and without dispersion correction). The donor–acceptor interactions between drug and the cavity wall of the host, studied on the basis of natural bonding orbital (NBO) analysis, show the presence of weak intermolecular hydrogen bonds in addition to the most important van der Waals interactions. Furthermore, it is revealed that among the DFT and DFT-D techniques selected to quantify these interactions, WB97X-D functional provides the greatest values of stabilization energies E(2). Finally, a detailed topological charge density analysis based on the quantum theory of atoms in molecules (QTAIM), developed by Bader and co-workers, has been accomplished using the WB97X-D and B3LYP methods on the most favorable complexes. A good correlation between the structural parameters and the electronic density is found.  相似文献   

12.
13.
Independent component analysis (ICA) has demonstrated its power to extract mass spectra from over-lapping GC/MS signal. However, there is still a problem that mass spectra with negative peaks at some m/z will be obtained in the resolved results when there are overlapping peaks in the mass spectra of a mixture. Based on a detail theoretical analysis of the preconditions for ICA and the non-negative property of GC/MS signals, a post-modification based on chemical knowledge (PMBK) strategy is pro-posed to solve this problem. By both simulated and experimental GC/MS signals, it was proved that the PMBK strategy can improve the resolution effectively.  相似文献   

14.
The interaction between leucine and β-cyclodextrin with different solvents was studied by molecular mechanics and dynamics simulations. In order to analyse the influence of the solvent polarity on the inclusion complex formation and separation process of leucine enantiomers by β-cyclodextrin, the organic modifiers were characterised by the same value of dielectric constant in the electrostatic contribution to the interaction energy, and a different molecular configuration of amino acids (neutral or zwitterion). The complexes formed in polar solvents were more stable than those in non-polar solvents with the same dielectric constant, because the electrostatic contribution is negative for the former and positive for the latter. The optimized structures obtained for leucine enantiomers and β-cyclodextrin in vacuo are non-inclusion complexes. The solvent polarity contributes to increasing the probability of the presence in an inner position for the guest, whereas the results for non-polar configurations were smaller and distributed in larger areas. The regions where the enantiomers spend more time in the simulation correspond to locations with greater chiral discrimination. d-Leu was the first eluted enantiomer in every case, except for a polar solvent with ε=26.  相似文献   

15.
The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.  相似文献   

16.
Biguanides are a class of drugs derived from biguanide and they are the most widely used drugs for diabetes mellitus or pre-diabetes treatment. An investigation of their interaction and a transport protein such as β-lactoglobulin (BLG) at atomic level could be a valuable factor in controlling their transport to biological sites. Molecular-docking and molecular dynamics simulation methods were used to study the interaction of metformin, phenformin and buformin as biguanides and BLG as transport protein. The molecular-docking results revealed that these biguanides bind to BLG and that the BLG affinity for binding the biguanides decreases in the following order: phenformin — buformin — metformin. The docking results also show the hydrophobic interactions to have a significant role in the BLG-biguanides complex stability. Analysis of molecular dynamic simulation trajectories shows that the root mean square deviation of various systems attained equilibrium and fluctuated around the mean value at various times. The time evolution of the radius of gyration and the total solvent-accessible surface of the protein showed that BLG and BLG-biguanide complexes became stable at approximately 2500 ps and that there was not any conformational change in the BLG-biguanide complexes. In addition, the profiles of atomic fluctuations show the rigidity of the ligand-binding site during the simulation.  相似文献   

17.
The health benefits of black tea have been linked to polyphenol metabolites that target specific modes of action in the human body. A major bottleneck in unravelling the underlying mechanisms is the preparative isolation of these metabolites, which hampers their structural elucidation and assessment of in vitro bioactivity. A solid phase extraction (SPE)-preparative liquid chromatography (prepLC)–MS–LC–MS-NMR workflow was implemented for preparative isolation of conjugated valerolactone metabolites of catechin-based polyphenols from urine of black tea consumers. First, the urine was cleaned and preconcentrated using an SPE method. Subsequently, the clean urine concentrate was injected on a preparative LC column, and conjugated valerolactones were obtained by MS-guided collection. Reconstituted fractions were further separated on an analytical LC column, and valerolactone fractions were collected in an MS-guided manner. These were reconstituted in methanol-d4 and identified and quantified using 1D and 2D homo- and hetereonuclear NMR experiments (at a field strength of 14.1 T), in combination with mass spectrometry. This resulted in the full spectral 1H and 13C NMR assignments of five conjugated valerolactones. These metabolites were collected in quantities of 8–160 μg and purities of 70–91%. The SPE-prepLC–MS–LC–MS-NMR workflow is suitable for isolating metabolites that occur at sub-μM concentrations in a complex biofluid such as urine. The workflow also provides an alternative for cumbersome and expensive de novo synthesis of tea metabolites for testing in bioactivity assays or for use as authentic analytical standards for quantification by mass spectrometry.  相似文献   

18.
Theuseofsamariumdiiodideasastrongone-electrontransferreducingandcouplingreagentinorganicsynthesishasgainedincreasingpopularity,especiallyinthepasttenyears1OurpreviousworkonsomedeoxygenationandsomereductivecleavageofSe-SeorTe-TebondwithSmI2wasrepel'te...  相似文献   

19.
An inclusion complex between the agrochemical chloropropham (CIPC) and β-cyclodextrin (β-CD) was prepared. A 2:1 host-guest stoichiometry was conformed by elemental analysis. From the phase solubility studies, the calculated stepwise stability constants were K(1)=224.6L/mol and K(2)=939.2L/mol, respectively. FT-IR, thermoanalysis and (1)H NMR spectra were applied to characterize the complex. It was speculated that the inclusion mode was two β-CD cavities included the chlorophenyl and the isopropyl moiety of one CIPC molecule, which was in agreement with the most predominant configuration optimized by molecular modeling. By complexation with β-CD, the water solubility and the thermal stability of CIPC were prominently improved.  相似文献   

20.
Excimer emission of caffeine with α-CD and β-CD were studied by UV-visible, fluorescence, time-resolved fluorescence, FTIR, 1H NMR and molecular modelling techniques. Changes in the absorbance and fluorescence and lifetime of the caffeine with cyclodextrin (CD) solutions indicate (i) caffeine shows dual emission in the CD solutions, (ii) normal emission originates from a monomer and the longer wavelength emission is due to excimer and (iii) in both CDs caffeine forms 1:2 inclusion complex. Carbonyl stretching frequency moved to higher wave numbers and broadening of the N–H stretching band indicated the formation of inclusion complex. The resonance of the methyl protons of caffeine show remarkable upfield or downfield shift in the 1H NMR, which indicates imidazole ring of the caffeine entrapped in the CD cavities. Investigations of energetic, thermodynamic and electronic properties of PM3 computational calculations confirmed the stability of the inclusion complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号