首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
采用沸点仪测定了顺丁烯二酸酐和邻苯二甲酸二甲酯二元体系在4.00, 8.00和12.00 kPa下的等压气液平衡数据以及纯DMP组分饱和蒸气压数据, 将实验数据回归得到了纯DMP在417~525 K范围内的Antoine方程. 根据实验平衡温度、 压力和组成数据进一步回归得到NRTL方程参数, 推算出平衡气液相组成, 并利用UNIFAC方程对实验数据进行了预测, 其结果与沸点仪测定结果及NRTL拟合的结果基本相符.  相似文献   

4.
The present work concerns the thermochemical and vapor pressure behavior of the pyrene + 9,10-dibromoanthracene system. The phase diagram of the system has been studied using the thaw melt method and the results show the formation of non-eutectic multiphase mixtures. The temperatures of crystallization, and enthalpies of fusion and crystallization of the system were determined by differential scanning calorimetry. The system behavior can be divided into 5 regions. The X-ray diffraction results also indicated the existence of multiple phase characteristics. The solid-vapor equilibrium studies showed that for mixtures with high mole fractions of pyrene, two different preferred states exist that determine the vapor pressure. For those mixtures with moderate and low mole fractions of pyrene, only one preferred state exists that determines vapor pressure behavior. It was also demonstrated that the vapor pressure of the mixtures is independent of the mixture preparation technique.  相似文献   

5.
A solid-liquid equilibrium (SLE) thermodynamic model based on the SAFT-VR equation of state (EOS) is presented. The model allows for the calculation of solid-liquid phase equilibria in binary mixtures at atmospheric pressure. The fluid (liquid) phase is treated with the SAFT-VR approach, where molecules are modelled as associating chains of tangentially bonded spherical segments interacting via square-well potentials of variable range. The equilibrium between the liquid and solid phase is treated following a standard thermodynamic method that requires the experimental temperature and enthalpy of fusion of the solute. The model is used to calculate the solubilities of naphthalene and acetic acid in common associating and non-associating organic solvents and to determine the solid-liquid phase behaviour of binary mixtures with simple eutectics. The SAFT-VR pure component model parameters are determined by comparison to experimental vapour pressure and saturated liquid density data with the choice of association models according to the nature of the molecule; in addition, an unlike adjustable parameter (kij) is used to model the solutions. The solubility data of naphthalene and acetic acid in both associating and non-associating solvents are reproduced essentially within the accuracy of the experimental measurements. The phase boundaries and the position of the eutectic points in the binary mixtures considered are, in most cases, reproduced with the accuracy commensurate with the industrial applications. Overall, the results presented show that the SAFT-VR EOS can be used with confidence for the prediction of the SLE of binary systems at atmospheric pressure.  相似文献   

6.
Isothermal vapor–liquid equilibria at 333.15 K, 343.15 K and 353.15 K for three binary mixtures of o-xylene, m-xylene and p-xylene individually mixed with N-methylformamide (NMF), have been obtained at pressures ranged from 0 kPa to 101.3 kPa over the whole composition range. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Peng–Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities were measured by using two vibrating tube densitometers. The excess molar volumes of the liquid phase were also determined. Three systems of o-xylene + NMF, m-xylene + NMF and p-xylene + NMF mixtures present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive. Temperature dependent intermolecular parameters in the NRTL model correlation were finally obtained in this study.  相似文献   

7.
In this article, isobaric vapor–liquid equilibria for the ternary mixture of ethanol?+?benzene?+?cyclohexane was experimentally investigated at atmospheric pressure. Vapor–liquid equilibria data for ethanol?+?benzene?+?cyclohexane at 101.3?kPa were obtained with a Othmer-type ebulliometer. Data were tested and considered thermodynamically consistent. The experimental results showed that this ternary mixture is completely miscible and exhibits three binary homogeneous azeotropes and a ternary minimum azeotrope at the studied conditions. Satisfactory results were obtained for correlation of equilibrium compositions with UNIQUAC activity coefficients model and also for prediction with UNIFAC method. In both cases, low root mean square deviations of vapor mole fraction and temperature were calculated. The capability of ethanol as modified distillation agent at atmospheric condition is discussed in terms of the thermodynamic topological analysis. However, owing to the complex topology of the ternary mixture it leads to a distillation scheme with three columns and difficult operation and thus, ethanol is not recommended as a separating agent for benzene?+?cyclohexane azeotrope.  相似文献   

8.
《Fluid Phase Equilibria》2006,242(1):19-28
In this work, a new two-parameter cubic equation of state is presented based on perturbation theory for predicting phase behavior of pure compounds and of hydrocarbons and non-hydrocarbons. The parameters of the new cubic equation of state are obtained as functions of reduced temperature and acentric factor. The average deviations of the predicted vapor pressure, liquid density and vapor volume for 40 pure compounds are 1.116, 5.696 and 3.083%, respectively. Also the enthalpy and entropy of vaporization are calculated by using the new equation of state. The average deviations of the predicted enthalpy and entropy of vaporization are 2.393 and 2.358%, respectively. The capability of the proposed equation of state for predicting some other thermodynamic properties such as compressibility, second virial coefficient, sound velocity in gases and heat capacity of gases are given, too. The comparisons between the experimental data and the results of the new equation of state show the accuracy of the proposed equation with respect to commonly used equations of state, i.e. PR and SRK. The zeno line has been calculated using the new equation of state and the obtained result compared with quantities in the literatures. Bubble pressure and mole fraction of vapor for 16 binary mixtures are calculated. Averages deviations for bubble pressure and mole fraction of vapor are 9.380 and 2.735%, respectively.  相似文献   

9.
《Fluid Phase Equilibria》2006,245(1):71-82
For mixtures with many components, some or most of the components are grouped into pseudo-components in order to reduce the dimensionality of the problem for phase equilibrium calculations, and therefore the computational effort. However, knowing the detailed fluid phase split may be important for a variety of applications. The detailed phase compositions resulting from a flash calculation performed on a lumped mixture can be predicted using a delumping (inverse lumping) procedure [C.F. Leibovici, E.H. Stenby, K. Knudsen, Fluid Phase Equilibr. 117 (1997) 225–232].If the mixture parameters of an equation of state (EoS) can be expressed as a linear combination of pure component parameters and the phase mole fractions, then the component fugacity coefficients can also be expressed as a linear combination of pure component parameters with coefficients only depending on mixture properties. As a result, the equilibrium coefficients are related only to component properties and EoS coefficients, independently on phase compositions.In this work, we show using a reduction method how to effectively obtain such an expression of the equilibrium constants even for non-zero binary interaction parameters (BIPs) in the EoS, and based on these results, we propose a totally consistent analytical procedure for the estimation of equilibrium constants of detailed mixtures from lumped information, which is an extension of Leibovici's delumping method.For several examples with non-zero BIPs between hydrocarbon components and classical contaminants, phase mole fractions and the vapor mole fraction of the delumped mixture are in excellent agreement with the exact values obtained by flashing the original mixture. The delumping procedure has multiple applications, mainly for reservoir simulation and distillation problems.  相似文献   

10.
《Fluid Phase Equilibria》1999,155(2):229-239
Isobaric vapor–liquid equilibria (VLE) have been obtained for the systems trichloroethylene+1-pentanol, trichloroethylene+2-methyl-1-butanol and trichloroethylene+3-methyl-1-butanol at 100 kPa using a dynamic still. The experimental error in temperature is ±0.1 K, in pressure ±0.1 kPa, and in the liquid and vapor mole fraction ±0.001. The three systems satisfy the point-to-point thermodynamic consistency test. All the systems show positive deviations from ideality. The data have been correlated with the Margules, van Laar, Wilson, NRTL and UNIQUAC equations.  相似文献   

11.
In this paper the results of the vapor–liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn’t.  相似文献   

12.
Isothermal vapor–liquid equilibrium (VLE) at 333.15 K and 353.15 K for four binary mixtures of benzene + toluene, benzene + N-methylformamide, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0 kPa to 101.3 kPa. The NRTL, UNIQUAC and Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave–Redlich–Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were also measured by using two vibrating tube densitometers. The Pxy diagram and the activity coefficient indicate that two mixtures of benzene + toluene and toluene + m-xylene were close to the ideal solution. However, two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The excess Gibbs energy in the benzene + toluene mixture is negative indicates that it is an exothermic system.  相似文献   

13.
A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.  相似文献   

14.
燃料馏分油气-液相平衡常数的测定与关联   总被引:4,自引:1,他引:4  
实沸点蒸馏原油获得燃料馏分油。采用拟静态法测定不同沸程的22种燃料馏分油在系列温度下的泡点蒸气压,用Antoine方程关联蒸气压与温度的关系。在泡点压力分别为10 kPa、30 kPa、50 kPa、80 kPa和101.325 kPa时,按虚拟组分处理法计算了燃料宽馏分油中各虚拟组分的气-液相平衡常数,关联了气-液相平衡常数与虚拟组分的沸点以及相平衡温度、压力的关系,得到的表达式可以计算常压沸点范围在348.15 K至623.15 K间燃料宽馏分油的气-液相平衡常数,经180个数据点回归检验,平均误差为4.5%。  相似文献   

15.
Expansion of an organic solvent by an inert gas can be used to tune the solvent's liquid density, solubility strength, and transport properties. In particular, gas expansion can be used to induce miscibility at low temperatures for solvent combinations that are biphasic at standard pressure. Configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to investigate the vapor-liquid-liquid equilibria and microscopic structures for two ternary systems: n-decane/n-perfluorohexane/CO2 and n-hexane/n-perfluorodecane/CO2. These simulations employed the united-atom version of the transferable potential for phase equilibria (TraPPE-UA) force field. Initial simulations for binary mixtures of n-alkanes and n-perfluoroalkanes showed that special mixing parameters are required for the unlike interactions of CHx and CFy pseudoatoms to yield satisfactory results. The calculated upper critical solution pressures for the ternary mixtures at a temperature of 298 K are in excellent agreement with the available experimental data and predictions using the SAFT-VR (statistical associating fluid theory of variable range) equation of state. The simulations yield asymmetric compositions for the coexisting liquid phases and different degrees of microheterogeneity as measured by local mole fraction enhancements.  相似文献   

16.
Isothermal vapor–liquid equilibria at 333.15 K and 353.15 K for four binary mixtures of benzene + nonane, toluene + o-xylene, m-xylene + sulfolane and o-xylene + sulfolane have been obtained at pressures ranged from 0 to 101.3 kPa over the whole composition range. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Peng–Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities of these solutions were measured by using two vibrating tube densitometers. The excess molar volumes of the liquid phase were also determined. The Pxy phase behavior indicates that mixtures of m-xylene + sulfolane, o-xylene + sulfolane and benzene + nonane present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive.  相似文献   

17.
The transesterification of sunflower seed oil was carried out in supercritical ethanol without using any catalyst to produce biodiesel. In the present work, methylcyclohexane was added to enhance the vapor pressure of biodiesel. The vapor pressures of mixtures of biodiesel + methylcyclohexane as a function of temperature were measured by comparative ebulliometry with an inclined ebulliometer. The vapor pressures versus composition at different temperatures were obtained. Experimental data of vapor pressures and equilibrium temperatures were correlated by the Antoine equation. A mathematical model was used to predict the flash point of the pseudo binary mixtures. With the regular solution theory, the predictive flash point displays agreement with the experimental data obtained by closed cup test.  相似文献   

18.
《Fluid Phase Equilibria》2005,227(1):113-124
Isobaric vapor–liquid equilibrium measurements are reported for the binary system (−)-beta-pinene + (+)-fenchone at the constant pressure of 13.33 kPa in the temperature range from 341.60 K to 393.25 K. The boiling temperatures of the mixtures were also measured at seven constant compositions in the pressure range from 2.56 kPa to 20.80 kPa. The experimental data were found to be thermodynamically consistent. Reduction of the vapor–liquid equilibrium data was carried out by means of the Wilson, NRTL and UNIQUAC equations. Our data on vapor–liquid equilibria for mixtures containing terpenoids are examined in terms of the DISQUAC and modified UNIFAC (Dortmund) group contributions models. Interaction parameters of the DISQUAC model are reported.  相似文献   

19.
The vapor-liquid equilibrium of binary mixtures of xenon + SF6 has been measured at nine temperatures from 235.34 to 295.79 K and pressures up to 6.5 MPa. The mixture critical line is found to be continuous between the critical points of the pure components, and hence, the system can be classified as type I phase behavior in the scheme of van Konynenburg and Scott. The excess Gibbs free energies have been calculated, and the experimental results have been interpreted using the statistical associating fluid theory for potentials of variable range (SAFT-VR). Additionally, the SAFT-VR equation has been used to model other systems involving SF6 and alkanes, illustrating the predictability of the approach and further demonstrating the transferability of parameters between binary mixtures involving alkanes and xenon.  相似文献   

20.
The boiling temperatures for solutions of five binary systems are measured via ebulliometry in the pressure range of 5.333–101.3 kPa. The isotherms constructed for the pressure of saturated vapor serve as the base for computing the compositions of equilibrium vapor phases of the systems. The excess Gibbs energies, enthalpies, and entropies of solutions are computed from the data on liquid-vapor equilibrium. The laws of changes in the phase equilibria and thermodynamic properties of solutions are determined depending on the composition and temperature of the systems. The vapor-liquid equilibrium of the systems is described by Wilson and NRTL equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号