首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a study of control of the HCN-->CNH isomerization in a liquid Ar solution. We show, using molecular dynamics simulations, nearly complete conversion from HCN to CNH can be achieved in solution on the subnanosecond time scale without requiring laser pulse shaping or molecular alignment. The mechanism of the isomerization reaction involves multiphoton rovibrational excitation on the ground electronic state potential energy surface coupled with rapid rovibrational relaxation in solution. The results demonstrate the important role of rotation-vibration coupling in multiphoton excitation of small molecules and constitute the first realistic computational demonstration of fast, robust, and high-yield laser field manipulation of solution-phase molecular processes.  相似文献   

2.
We report a full-dimensional study of the classical dynamics of HCN-->HNC isomerization and of HCN rovibrational dissociation driven by a strong but nonionizing picosecond infrared laser field. The dynamics of the isolated molecule and of the molecule in liquid Ar have both been studied. Our theoretical and numerical results show that when all degrees of freedom are accounted for the field induced molecular dynamics can be totally different from what was found in previous studies, where the HCN molecule is restricted to a plane containing the external field. It is shown that as HCN is driven by an infrared laser field, the rotation of the H atom around the C-N bond provides an important and highly efficient energy absorption mechanism. In the presence of a monochromatic picosecond infrared laser field with an intensity of 10(13) W/cm(2), this energy absorption mechanism generates considerable HCN-->HNC isomerization yield or high rovibrational dissociation yield without molecular preorientation or prealignment. Our study of the field induced isomerization and dissociation dynamics of the same system in liquid Ar shows that the picosecond isomerization dynamics is insignificantly affected by the surrounding atomic liquid whereas the dissociation yield may be greatly suppressed in a high density liquid. The implications of this study for full-dimensional quantum dynamics of multiphoton rovibrational excitation and dissociation of triatomics are briefly discussed.  相似文献   

3.
We have analyzed the dynamics underlying the use of sequential radiation pulses to control the isomerization between the HCN and the CNH molecules. The appearance of avoided crossings among Floquet eigenphases as the molecule interacts with the radiation pulses is the key to understanding the isomerization dynamics, both in the adiabatic and nonadiabatic regimes. We find that small detunings of the incident pulses can have a significant effect on the outcome of the isomerization process for the model we consider.  相似文献   

4.
Equilibrium structures and both harmonic and anharmonic stretching force constants have been calculated ab initio for the four cyanides HCN, LiCN, FCN, and C1CN, and the four isocyanides HNC, LiNC, FNC, and ClNC, using several basis sets of about triple-zeta quality. The CN and NC bond lengths, as well as diagonal stretching force constants, are nearly the same throughout both series. Trends in the off-diagonal stretching force constants are discussed, and dipole moment values are correlated with the structural type, XCN and XNC, and the electronegativity of the ligand X.  相似文献   

5.
Raman spectra of single crystal-like oriented solid HCN and DCN, as well as of HCN molecules and clusters in argon matrices, have been recorded and analysed with respect to both so far uninterpreted spectral features reported in the literature and to the applicability of Raman experiments for studying molecular clusters in inert gas matrices. The main results obtained are: (i) splitting of both the intramolecular bending modes and librations of solid HCN has to be interpreted in terms of TO/LO splitting rather than site group splitting; (ii) the nature of the phase transition at 170 K reported as tI6 to oI6 must be doubted; and (iii) the previous results of HCN(DCN)/Ar matrices obtained by IR studies are confirmed.  相似文献   

6.
Recent progress in Fourier transform IR and far IR investigation of intermolecular interactions in liquid solutions and cryogenic matrices will be reported. Particular emphasis is given to routine performance checks of the spectrometer and to novel techniques of sample preparation and related equipment. The described examples are the dynamics of H2O isolated in solid Ar and the aggregational behaviour of HCN and CH3CN in diverse liquid and solid phases.  相似文献   

7.
秸秆含氮模型化合物热解氮转化规律的实验研究   总被引:1,自引:0,他引:1  
采用TG-FTIR联用实验系统,在氩气氛围下研究了含氮模型化合物甘氨酸酐热解失重特性以及NOx前驱物的释放特性;研究了K、Ca、Fe金属盐对甘氨酸酐热解氮转化的影响。结果表明,在20、40、60℃/min升温速率下,NH3、HCN、HNCO为甘氨酸酐热解的主要气相含氮产物,其中,NH3产率最大,HCN次之,HNCO生成量最小;随升温速率增加,TG失重曲线右移,热解剩余物减少;且HCN和HNCO的产率增加,NH3产率降低;K、Ca、Fe盐均对甘氨酸酐热解氮转化具有催化作用,其中,K、Ca有利于促进NH3、HCN的生成,Fe对HCN的生成具有促进作用,但对NH3的生成起到抑制作用。  相似文献   

8.
We report the in situ observation from diffraction data of the conversion of a gas hydrate with the structure II (sII) lattice to one with the structure I (sI) lattice. Initially, the in situ formation, dissociation, and reactivity of argon gas clathrate hydrate was investigated by time-of-flight neutron powder diffraction at temperatures ranging from 230 to 263 K and pressures up to 5000 psi (34.5 MPa). These samples were prepared from deuterated ice crystals and transformed to hydrate by pressurizing the system with argon gas. Complete transformation from D(2)O ice to sII Ar hydrate was observed as the sample temperature was slowly increased through the D(2)O ice melting point. The transformation of sII argon hydrate to sI hydrate was achieved by removing excess Ar gas and exposing the hydrate to liquid CO(2) by pressurizing the Ar hydrate with CO(2). Results suggest the sI hydrate formed from CO(2) exchange in argon sII hydrate is a mixed Ar/CO(2) hydrate. The proposed exchange mechanism is consistent with clathrate hydrate being an equilibrium system in which guest molecules are exchanging between encapsulated molecules in the solid hydrate and free molecules in the surrounding gas or liquid phase.  相似文献   

9.
An approach that combines molecular dynamics and stochastic dynamics calculations for obtaining reaction rates in liquids is investigated by studying the cis-->trans isomerization of HONO in liquid krypton. The isomerization rates are computed for several liquid densities by employing full-dimensional molecular-dynamics simulations. The rates are also computed by employing the stochastic dynamics method for a wide range of collision frequencies. Comparisons of the two sets of the computed rates show that for a wide range of liquid densities there is a simple linear relation between the liquid density rho and the collision frequency alpha, that is, alpha=crho. This suggests that once the constant c is determined from a molecular-dynamics calculation at a single density, the reaction rates can be obtained from stochastic dynamics calculations for the entire range of liquid densities where alpha=crho holds. The applicability of the combined molecular dynamics and stochastic dynamics approach provides a practical means for obtaining rate constants at considerable savings of computer time compared to that required by using full-dimensional molecular-dynamics simulations alone.  相似文献   

10.
Accurate computer simulations of the rotational dynamics of linear molecules solvated in He clusters indicate that the large-size (nanodroplet) regime is attained quickly for light rotors (HCN) and slowly for heavy ones (OCS, N2O, and CO2), thus challenging previously reported results. Those results spurred the view that the different behavior of light rotors with respect to heavy ones-including a smaller reduction of inertia upon solvation of the former-would result from the lack of adiabatic following of the He density upon molecular rotation. We have performed computer experiments in which the rotational dynamics of OCS and HCN molecules was simulated using a fictitious inertia appropriate to the other molecule. These experiments indicate that the approach to the nanodroplet regime, as well as the reduction of the molecular inertia upon solvation, is determined by the anistropy of the potential, more than by the molecular weight. Our findings are in agreement with recent infrared and/or microwave experimental data which, however, are not yet totally conclusive by themselves.  相似文献   

11.
This paper reports calculations of the rate of isomerization of HCN - HCN based on the theory of Gary and Rice as extended by Zhao and Rice. The major task is to determine the effect of intramolecular energy transfer on the prediction of the rate of isomerization. Both the full three-dimensional (3D) system and the reduced two-dimensional (2D) system obtained from freezing CN bond at 1.159 A are analyzed to check the validity of the freezing bond approximation. Meanwhile, RRKM rates are calculated to test RRKM choice of the transition state by comparing to Gary-Rice three-state model. The comparison shows that the rates from 2D model and 3D model are differing up to 20% with 2D rates consistently larger. The intramolecular energy transfer modifies the isomerization rate for HCN system up to 30% that is modestly small by the expectation. The isomerization rate predicted from RRKM theory is greater than those of Gary-Rice three-state model theory up to 65%, and it overstimates the rates under all consider  相似文献   

12.
We report X 1A' and 2 1A' potential energy surfaces for HCN. Thermal isomerisation on the ground-state surface is discussed. An avoided crossing between X 1A' and 2 1A' suggests alternative isomerisation mechanisms via this excited state. The X1A'-21A' interaction may also allow the formation of CN(X 2Σ+) in photodissociation of XCN molecules.  相似文献   

13.
Rovibrational spectra are measured for the HCCCN*HCN and HCN*HCCCN binary complexes in helium droplets at low temperature. Though no Q-branch is observed in the infrared spectrum of the linear HCN*HCCCN dimer, which is consistent with previous experimental results obtained for other linear molecules, a prominent Q-branch is found in the corresponding infrared spectrum of the HCCCN*HCN complex. This Q-branch, which is reminiscent of the spectrum of a parallel band of a prolate symmetric top, implies that some component of the total angular momentum is parallel to the molecular axis. The appearance of this particular spectroscopic feature is analyzed here in terms of a nonsuperfluid helium density induced by the molecular interactions. Finite temperature path integral Monte Carlo simulations are performed using potential energy surfaces calculated with second-order M?ller-Plesset perturbation theory, to investigate the structural and superfluid properties of both HCCCN*HCN(4He)N and HCN*HCCCN(4He)N clusters with N < or = 200. Explicit calculation of local and global nonsuperfluid densities demonstrates that this difference in the rovibrational spectra of the HCCCN*HCN and HCN*HCCCN binary complexes in helium can be accounted for by local differences in the superfluid response to rotations about the molecular axis, i.e., different parallel nonsuperfluid densities. The parallel and perpendicular nonsuperfluid densities are found to be correlated with the locations and strengths of extrema in the dimer interaction potentials with helium, differences between which derive from the variable extent of polarization of the CN bond in cyanoacetylene and the hydrogen-bonded CH unit in the two isomers. Calculation of the corresponding helium moments of inertia and effective rotational constants of the binary complexes yields overall good agreement with the experimental values.  相似文献   

14.
We have studied the photoinduced trans/cis isomerization of the protonated form of p-hydroxycinnamic thiophenyl ester, a model chromophore of the photoactive yellow protein (PYP), in crystalline phase, by both fluorescence and infrared spectroscopies. The conversion from trans to cis configuration is revealed by a shift of the fluorescence peak and by inspection of the infrared maker bands. The crystal packing apparently stabilizes the cis photoproduct, suggesting different environmental effects from the solvent molecules for this model chromophore in liquid solutions or from the amino acid residues for the PYP chromophore.  相似文献   

15.
Zinc and cadmium atoms from laser ablation of the metals and mercury atoms ablated from a dental amalgam target react with HCN in excess argon during deposition at 5 K to form the MCN and MNC molecules and CN radicals. UV irradiation decreases the higher energy ZnNC isomer in favor of the lower energy ZnCN product. Cadmium and mercury atoms produce analogous MCN primary molecules. Laser ablation of metals also produces plume radiation which initiates H-atom detachment from HCN. The freed H atom can add to CN radical to produce the HNC isomer. The argon matrix also traps the higher energy but more intensely absorbing isocyanide molecules. Further reactions with H atoms generate HMCN and HMNC hydrides, which can be observed by virtue of their C−N stretches and intense M−H stretches. Computational modeling of IR spectra and relative energies guides the identification of reaction products by providing generally reliable frequency differences within the Zn, Cd and Hg family of products, and estimating isotopic shifts using to 13C and 15N isotopic substitution for comparison with experimental data.  相似文献   

16.
Ab initio calculations were carried out for the reactions of silane and halosilanes (SiH3X, X=H, Cl, Br, I) with HCN. Geometries of the reactants, transition states, intermediates and products were optimized at HF, MP2, and B3LYP levels of theory using the 6-31G(d) and 6-31G(d,p) basis sets. Energies were also obtained using G3MP2 and G3B3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. It was found that HCN can react with silane and halosilanes via three different mechanisms. One involves HX elimination by a one-step pathway producing SiH3CN. The second mechanism consists of H2 elimination, producing SiH2XCN via a one-step pathway or three multiple-step pathways. The third mechanism involves dissociation of SiH3X to various products, which can then react with HCN. Activation energies, enthalpies, and free energies of activation along with the thermodynamic properties (DeltaE, DeltaH, and DeltaG) of each reaction pathway were calculated. The reaction of SiH3X with HCN produce different products depending on substituent X. We have found that the standard 6-31G(d) bromine basis set gave results which were in better agreement with the G3MP2 results than for the Binning-Curtiss basis set. Computed heats of formation (DeltaHf) for SiH3CN, SiH3NC, SiH2ClCN, SiH2BrCN, SiH2ICN, SiHCl, SiHBr, and SiHI were found to be 133.5, 150.8, -34.4, 23.6, 102.4, 48.7, 127.1, and 179.8 kJ mol-1, respectively. From enthalpies calculated at G3MP2, we predict that the DeltaHf for SiH2 to be 262.8 kJ mol-1 compared to the experimental value of 273.8+/-4.2 kJ mol-1.  相似文献   

17.
By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v = 1, 2) and CO(v = 1-3) are detected in one-photon dissociation of acetyl cyanide (CH(3)COCN) at 308 nm. The S(1)(A(")), (1)(n(O), π(?) (CO)) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10(-12) cm(3) molecule(-1) s(-1). The measurements of O(2) dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJ∕mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH(2)CO, in which the CH(2)CO moiety may further undergo secondary dissociation to release CO. The production of CO(2) in the reaction with O(2) confirms existence of CH(2) and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH(3) fragments that dominate the dissociation products at 193 nm are not detected.  相似文献   

18.
引发剂对离子液体催化正己烷异构化反应的影响   总被引:3,自引:1,他引:2  
由无水三氯化铝与盐酸三乙胺按照摩尔比2∶1合成了离子液体2AlCl3/Et3NHCl,并考察了其催化正己烷异构化的反应性能。发现离子液体2AlCl3/Et3NHCl可用于催化正己烷的异构化反应,但所需的反应时间较长。考察了引发剂正丁醇、异丁烯、异丁烷和异戊烷对离子液体催化正己烷异构化反应的影响。发现异戊烷作为引发剂时,正己烷的转化率为84.54%,液体收率为80.08%,异构烷烃的选择性为94.74%,达到了较好的反应效果。引发剂异戊烷的用量对异构化反应有着较大的影响,较优的引发剂用量为30%。添加异戊烷引发剂能明显提高离子液体催化正己烷异构化的反应速度,达到相似反应程度的反应时间可由6h缩短为45min。  相似文献   

19.
The quadricyclane-norbornadiene system is an important model for the isomerization dynamics between highly strained molecules. In a breakthrough observation for a polyatomic molecular system of that complexity, we follow the photoionization from Rydberg states in the time-domain to derive a measure for the time-dependent structural dynamics and the time-evolving structural dispersion even while the molecule is crossing electronic surfaces. The photoexcitation to the 3s and 3p Rydberg states deposits significant amounts of energy into vibrational motions. We observe the formation and evolution of the vibrational wavepacket on the Rydberg surface and the internal conversion from the 3p Rydberg states to the 3s state. In that state, quadricyclane isomerizes to norbornadiene with a time constant of τ(2) = 136(45) fs. The lifetime of the 3p Rydberg state in quadricyclane is τ(1) = 320(31) and the lifetime of the 3s Rydberg state in norbornadiene is τ(3) = 394(32).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号