首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In addition, the comparison of valence band photoemission spectra with the density functional theory calculations of the density of states of the H(2)Pc(-) anion indicates a filling of the formerly lowest unoccupied molecular orbital by charge transfer from the alkali. This is further confirmed by x-ray absorption spectroscopy (XAS) studies, which show a decreased density of unoccupied states. XAS measurements in different experimental geometries reveal that the molecules in the pristine film are standing upright on the surface or are only slightly tilted away from the surface normal but upon K intercalation, the molecular orientation is changed in that the tilt angle of the molecules increases.  相似文献   

2.
We study the electronic density charge topology of CH(5)(+) species 1 (C(s)()), 2 (C(s)()), and 3 (C(2)(v)) at ab initio level using the theory of atoms in molecules developed by Bader. Despite the reports of previous studies concerning carbocationic species, the methane molecule is protonated at the carbon atom, which clearly shows its pentacoordination. In addition to the fact that hydrogen atoms in the methonium molecule behave in a very fluxional fashion and that the energy difference among the species 1, 2, and 3 are very low, is important to point out that two different topological situations can be defined on the basis of our study of the topology of the electronic charge density. Then, the species 1 and 2 present a three-center-two-electron (3c-2e) bond of singular characteristics as compared with other carbocationic species, but in the species 3, the absence of a 3c-2e bond is noteworthy. This structure can be characterized through the three bond critical points found, corresponding to saddle points on the path bonds between the C-H(2,3,5) that lie in the same plane. These nuclei define a four-center interaction where the electronic delocalization produced among the sigma(C-H) bonds provide a stabilization of the three C-H bonds involved in this interaction (the remaining two C-H bonds are similar to those belonging to the nonprotonated species). Our results show that bonding situations with a higher number of atom arrays are possible in protonated hydrocarbons.  相似文献   

3.
In this study, we perform steady-state and time-resolved X-ray absorption spectroscopy (XAS) on the iron K-edge of [Fe(tren(py)3)](PF6)2 dissolved in acetonitrile solution. Static XAS measurements on the low-spin parent compound and its high-spin analogue, [Fe(tren(6-Me-py)3)](PF6)2, reveal distinct spectroscopic signatures for the two spin states in the X-ray absorption near-edge structure (XANES) and in the X-ray absorption fine structure (EXAFS). For the time-resolved studies, 100 fs, 400 nm pump pulses initiate a charge-transfer transition in the low-spin complex. The subsequent electronic and geometric changes associated with the formation of the high-spin excited state are probed with 70 ps, 7.1 keV, tunable X-ray pulses derived from the Advanced Light Source (ALS). Modeling of the transient XAS data reveals that the average iron-nitrogen (Fe-N) bond is lengthened by 0.21+/-0.03 A in the high-spin excited state relative to the ground state within 70 ps. This structural modification causes a change in the metal-ligand interactions as reflected by the altered density of states of the unoccupied metal orbitals. Our results constitute the first direct measurements of the dynamic atomic and electronic structural rearrangements occurring during a photoinduced FeII spin crossover reaction in solution via picosecond X-ray absorption spectroscopy.  相似文献   

4.
Molecular complexes formed by different forms of carbocations (carbenium ions) and carboanions with water, acetylene, and methane molecules have been calculated by the MP2/6-311++G(2df,2pd) method. In complexes with water where the carbon atom of the carbocation (carboanion) acts as the proton donor (acceptor), the energies of the C-H?O and O-H?C hydrogen bonds turn out to be approximately the same being 13–20 kcal/mol for carbocation (carboanion) species differing in the valence state of the carbon atom. Two types of C-H?C interactions have been revealed depending on the charge at the bridging hydrogen atom, which is determined by the hybridization of the donor carbon atom. The C-H?C interaction energy in molecular complexes with the positively charged hydrogen atom (carboanion complexes with acetylene) is an order of magnitude higher than in the complexes where the bridging hydrogen atom has an excess of electron density (carbocation complexes with methane). In all the complexes under consideration, the covalent C-H bond involved in interaction is elongated, and the negative charge is transferred from the acceptor to the donor.  相似文献   

5.
The properties of an isolated dangling bond formed by the chemisorption of a single hydrogen atom on a dimer of the Ge(001) surface are investigated by first-principles density functional theory (DFT) calculations, and scanning tunneling microscopy (STM) measurements. Two stable atomic configurations of the Ge-Ge-H hemihydride with respect to the neighboring bare Ge-Ge dimers are predicted by DFT. For both configurations, the unpaired electron of the HGe(001) system is found to be delocalized over the surface, rendering the isolated dangling bond of the hemihydride unoccupied. However, local surface charge accumulation, such as may occur during STM imaging, leads to the localization of two electrons onto the hemihydride dangling bond. The calculated surface densities of states for one of the charged Ge-Ge-H hemihydride configurations are found to be in good agreement with atomic-resolution STM measurements on n-type Ge(001). Comparison with a Si-Si-H hemihydride of the Si(001) surface shows similarities in structural properties, but substantial differences in electronic properties.  相似文献   

6.
Results of first principles local density total energy and atomic force calculations carried out for free C60 and XC60 (X=K, Rb, Cs) molecular clusters are reported. The optimization of the geometry results in the bond lengths between adjacent carbon atoms being 1.387 and 1.445 Å, which are in very good agreement with the latest X-ray diffraction values. Energy levels, charge distributions, and wavefunction characteristics are obtained and discussed. The results for C60 are in very good agreement with recently measured photoemission energy distribution curves (EDC) for the valence band states. The highest occupied molecular orbitals (HOMO) are found to be fully occupied Hu states and are 1.7 eV below the lowest unoccupied molecular orbitals (LUMO) which are of T1u symmetry. Similar results obtained for the XC60 clusters show that rigid-band-like behavior is found in the electronic structures after putting an alkali atom at the center of a C60 ball. In each case, the alkali atom is almost fully ionized with the transferred electron distributed over the surface shell of C60; the center region of the ball has very low charge density.  相似文献   

7.
The activation mechanisms of a methane molecule on a Pt atom (CH4-Pt) and on a Pt tetramer (CH4-Pt4) were investigated using density functional theory (B3LYP and PW91) calculations. The results from these two functionals are different mostly in predicting the reaction barrier, in particular for the CH4-Pt system. A new lower energy pathway was identified for the CH4 dehydrogenation on a Pt atom. In the new pathway, the PtCH2 + H2 products were formed via a transition state, in which the Pt atom forms a complex with carbene and both dissociated hydrogen atoms. We report here the first theoretical study of methane activation on a Pt4 cluster. Among the five single steps toward dehydrogenation, our results show that the rate-limiting step is the third step, that is, breaking the second C-H bond, which requires overcoming an energy barrier of 28 kcal/mol. On the other hand, the cleavage of the first C-H bond, that is, the first reaction step, requires overcoming an energy barrier of 4 kcal/mol.  相似文献   

8.
The electronic structure of the regular, two-dimensional bacterial surface protein layer of Bacillus sphaericus NCTC 9602 has been examined by photoemission (PE) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Both the O 1s and the N 1s core-level PE spectra show a single structure, whereas the C 1s core-level spectrum appears manifold, suggesting similar chemical states for each oxygen atom and also for each nitrogen atom, while carbon atoms exhibit a range of chemical environments in the different functional groups of the amino acids. This result is supported by the element-specific NEXAFS spectra of the unoccupied valence electronic states, which exhibit a series of characteristic NEXAFS peaks that can be assigned to particular molecular orbitals of the amino acids by applying a phenomenological building-block model. The relative contributions of the C-O, C-N, and C-C bond originating signals into the C 1s PE spectrum are in good agreement with the number ratios of the corresponding bonds calculated from the known primary structure of the bacterial surface protein. First interpretation of the PE spectrum of the occupied valence states is achieved on the basis of electronic density-of-states calculations performed for small peptides. It was found that mainly the pi clouds of the aromatic rings contribute to both the lowest unoccupied and the highest occupied molecular orbitals.  相似文献   

9.
甲烷是一种在自然界中大量存在的原材料,在取代原油和合成重要化工产品等许多领域具有潜在的应用价值. 然而,由于CH4中C-H键的键能特别大(约~4.5 eV),如何实现甲烷的绿色有效转化在化学化工领域仍然是一个挑战. 本文采用密度泛函理论对Co3O4(001)和(011)晶面活化甲烷C-H键的机理进行了理论研究,得到了如下结论:(1) CH4的C-H键在Co3O4晶面的解离具有很高的活性,只需要克服大约1 eV的能垒;(2)与Co2相连的Co-O离子对是CH4活化的活性位点,其中两个带正负电荷的离子对C-H解离起着协同作用,帮助产生Co-CH3和O-H物种;(3)(011)面的反应活性明显大于(001)面,与实验的观察一致. 本文的计算结果表明,Co3O4纳米晶面对CH4中C-H键的活化表现出明显的晶面效应和结构敏感效应,Co-O离子对活性中心对于活化惰性的C-H键发挥了关键作用.  相似文献   

10.
Measurements of the oxygen K-edge X-ray absorption spectrum (XAS) of aqueous sodium halide solutions demonstrate that ions significantly perturb the electronic structure of adjacent water molecules. The addition of halide salts to water engenders an increase in the preedge intensity and a decrease in the postedge intensity of the XAS, analogous to those observed when increasing the temperature of pure water. The main-edge feature exhibits unique behavior and becomes more intense when salt is added. Density functional theory calculations of the XAS indicate that the observed red shift of the water transitions as a function of salt concentration arises from a strong, direct perturbation of the unoccupied molecular orbitals on water by anions, and does not require significant distortion of the hydrogen bond network beyond the first solvation shell. This contrasts the temperature-dependent spectral variations, which result primarily from intensity changes of specific transitions due to geometric rearrangement of the hydrogen bond network.  相似文献   

11.
Using density functional theory formalism, we have investigated the adsorption behavior of thiols on the Pd(111) surface. Two different thiol molecules, viz. (a) methane thiol and (b) thiophene 2-thiol (TSH), were used as model adsorbates for this purpose. The results revealed that whereas the methane thiol molecule undergoes spontaneous dissociative chemisorption onto the palladium surface, the adsorption of the thiophene 2-thiol molecule does not involve cleavage of the S-H bond, leading to weak interaction energy or physisorption. The variation in the adsorption behavior has been explained based on the difference in the electronic environment of the terminal sulfur atom. The nature of binding at the interface has been analyzed through calculation of the partial density of states of the sulfur atom at the interface.  相似文献   

12.
Scratching beneath the surface: Pt-M(3d)-Pt(111) (M(3d) = Co, Ni) bimetallic subsurface alloys have been designed to show the ligand effect tunes reactivity in oxygen and hydrogen adsorption systems. The platinum-oxygen bond order was investigated by oxygen atom projection in the occupied and unoccupied space using X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS).  相似文献   

13.
We investigate the interaction between water molecules and gold nanoclusters Au(n) through a systematic density functional theory study within both the generalized gradient approximation and the nonlocal van der Waals (vdW) density functional theory. Both planar (n = 6-12) and three-dimensional (3D) clusters (n = 17-20) are studied. We find that applying vdW density functional theory leads to an increase in the Au-Au bond length and a decrease in the cohesive energy for all clusters studied. We classify water adsorption on nanoclusters according to the corner, edge, and surface adsorption geometries. In both corner and edge adsorptions, water molecule approaches the cluster through the O atom. For planar clusters, surface adsorption occurs in a O-up/H-down geometry with water plane oriented nearly perpendicular to the cluster. For 3D clusters, water instead favors a near-flat surface adsorption geometry with the water O atom sitting nearly atop a surface Au atom, in agreement with previous study on bulk surfaces. Including vdW interaction increases the adsorption energy for the weak surface adsorption but reduces the adsorption energy for the strong corner adsorption due to increased water-cluster bond length. By analyzing the adsorption induced charge rearrangement through Bader's charge partitioning and electron density difference and the orbital interaction through the projected density of states, we conclude that the bonding between water and gold nanocluster is determined by an interplay between electrostatic interaction and covalent interaction involving both the water lone-pair and in-plane orbitals and the gold 5d and 6s orbitals. Including vdW interaction does not change qualitatively the physical picture but does change quantitatively the adsorption structure due to the fluxionality of gold nanoclusters.  相似文献   

14.
The electronic structure of a vapor-sublimated thin film of metal-free phthalocyanine (H2Pc) is studied experimentally and theoretically. An atom-specific picture of the occupied and unoccupied electronic states is obtained using x-ray-absorption spectroscopy (XAS), core- and valence-level x-ray photoelectron spectroscopy (XPS), and density-functional theory (DFT) calculations. The DFT calculations allow for an identification of the contributions from individual nitrogen atoms to the experimental N1s XAS and valence XPS spectra. This comprehensive study of metal-free phthalocyanine is relevant for the application of such molecules in molecular electronics and provides a solid foundation for identifying modifications in the electronic structure induced by various substituent groups.  相似文献   

15.
The bond critical points and associated electronic properties of the diatomic hydrides of the twenty-one main group elements from lithium to bromine have been calculated with large basis sets. As part of a systematic study of the polarity of chemical bonds, the position of the bond critical point, the charge density at the bond critical point, the Laplacian of the charge density at the bond critical point, and the molecular dipole moment of each molecule have been calculated. Particular attention has been paid to the effect of bond length elongation and contraction on the electronic properties. Variation of the bond length reveals that with atoms of low electronegativity, the bond critical point of AH tends to follow atom A, whereas with atoms of high electronegativity, the bond critical point tends to follow the hydrogen atom as the bond lengthens. Furthermore, it is shown that some properties of the diatomic hydrides vary monotonically within each row of the periodic table, while others effect a classification according to the character of the bond.  相似文献   

16.
To explore the effect of surface contaminants on water chemistry at metallic surfaces, adsorption and decomposition of water monomers on clean and X/Pd(111)(X = C, N and O) surfaces are investigated based on density functional theory calculations. It is revealed that H(2)O binds to Pd(111) surface primarily through the mixing of its 1b(1) with the Pd 4d(z(2)) state. A charge accumulation between the oxygen atom of water and the bound Pd atom is calculated, which is found to be relevant to the H(2)O-Pd interaction. Water adsorption results in a reduction of surface work function and the polarization of the X 2p states. The O-H bond scission of H(2)O on the clean Pd(111) is an energy unfavorable process. In the case of X-assisted O-H bond breaking on X/Pd(111) surfaces, however, the reaction barrier tends to be lower than that on the clean surface and decreases from C/Pd(111) to O/Pd(111). In particular, water decomposition is found to become feasible on O/Pd(111), in agreement with the experimental observations. The calculated barrier is demonstrated to be correlated linearly with the density of X 2p states at the Fermi level. A thorough energy analysis demonstrates that the following geometrical and electronic factors favor the barrier reduction on X/Pd(111) with respect to water decomposition on clean Pd(111): (i) the less deformed structure of water in TS; (ii) the decreased bonding competition between the fragments OH and H. The remarkable decrease of the barrier on O/Pd(111) is revealed to be due to the largest stabilization of the split H atom and the least deformation of water in the TS.  相似文献   

17.
18.
Reaction of one equivalent of tris(3,5-di-tert-butyl-2-hydroxy)methane with TaCl5 in CH2Cl2 along with Et3N gave a solid which on prolonged crystallisation led to a small quantity of crystalline material. An X-ray crystal structure determination showed one crystal was [TaCl3[[OC6H2(CMe3)2-2,4]3CH]]- Et2NH2+.3C6H6.1.5H2O with the anion consisting of three chloro ligands and three phenoxides of the tripodal ligand about the tantalum centre. The triphenylmethyl group proton was located and refined and was found to be enclosed in a cage making contacts of 2.09(8), 2.09(8) and 1.89(12)A with the phenoxide ligand oxygens consistent with weak C-H bond hydrogen bonding. The hydrogen atom points at the tantalum atom at a distance of 2.14(11) A from it, the TaH-C angle is 166 degrees and the C-H bond distance is 1.04(12) A. DFT calculations at the B3LYP level indicate that where a hydrogen atom is attached to the triphenylmethyl carbon on the inside of the cage, there is good agreement with the crystal structure. The C-H bond points directly at the tantalum centre and an NBO analysis indicates there is significant overlap of the triphenylmethyl C-H bond electron density in a linear sense with an "unfilled" metal d orbital. Based on the NBO analysis, the C-HTa overlap would appear to be an example of a linear agostic interaction under the definition of agostic bonding.  相似文献   

19.
It was found that the C-H activation barrier can be divided into two parts: C-H approaching and bond breaking energies. The C-H approaching process starts from the reactant and ends at a cross-point structure which is followed by the C-H breaking process. This finding was proved by the intrinsic reaction coordinate (IRC) analysis, vibration frequency (VF) analysis, atom-centered density matrix propagation (ADMP) calculation, and potential energy surface (PES) scan. Further research revealed that the C-H bond breaking energy was related to the electronic structure of the catalyst and the C-H bond dissociation energy of the substrate, whereas the C-H approaching energy was highly relative with the interaction between the substrate and catalyst. These results may be helpful in designing a more effective catalyst.  相似文献   

20.
CH(x) (x=1-3) adsorptions on clean and CO precovered Rh(111) surfaces were studied by density functional theory calculations. It is found that CH(x) (x=1-3) radicals prefer threefold hollow sites on Rh(111) surfaces, and the bond strength between CH(x) and Rh(111) follows the order of CH(3)相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号