首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The supermolecular second order Moller-Plesset (MP2) intermolecular interaction energy is corrected by employing time-dependent density functional (TDDFT) response theory. This is done by replacing the uncoupled second order dispersion contribution contained in the supermolecular MP2 energy with the coupled dispersion energy obtained from the TDDFT approach. Preliminary results for the rare gas dimers He2, Ne2, and Ar2 and a few structures of the (HF)2 and (H2O)2 dimers show that the conventional MP2 interaction energies are considerably improved by this procedure if compared to coupled cluster singles doubles with perturbative triples [CCSD(T)] interaction energies. However, the quality of the interaction energies obtained in this way strongly depends on the exchange-correlation potential employed in the monomer calculations: It is shown that an exact exchange-only potential surprisingly often performs better than an asymptotically corrected hybrid exchange-correlation potential. Therefore the method proposed in this work is similar to the method by Cybulski and Lytle [J. Chem. Phys., 127, 141102 (2007)] which corrects the supermolecular MP2 energies with a scaled dispersion energy from time-dependent Hartree-Fock. The results in this work are also compared to the combination of density functional theory and intermolecular perturbation theory.  相似文献   

2.
The intermolecular interaction between the molecules CH2O and NH3 was investigated by the supermolecule method. The interaction energies were first calculated at the ab initio SCF level, and the electron correlation was included via second-order Møller-Plesset perturbation theory (MP 2). The basis set superposition error (BSSE ) was taken into account by the counter-poise (CP ) method. The occupied and the virtual canonical molecular orbitals (CMOS ) of the supermolecule were separately localized by the Boys' procedure. The correlation correction was calculated by the many-body perturbation theory (MBPT ) in the localized representation. Contributions of the third- and fourth-order localized diagrams were added to those of the second-order canonical diagram. This procedure gives a correction nearly equivalent to that of MP 2. The possibility to separate LMO contributions responsible for the dispersion interaction was investigated.  相似文献   

3.
在气相模型、极化连续模型、超分子模型和超分子-极化连续模型的基础上,采用量子化学团簇模型密度泛函理论方法,在B3LYP/6-311+G(d,p)基组水平下系统地开展了以下研究:优化得到Al(H2O)63+水交换反应的反应物、过渡态和产物构型,采用MP2方法在相同基组水平下计算得到相应的单点能,考虑零点振动能、热力学校正项和熵等参数的影响,计算得到Al(H2O)63+水交换反应的Gibbs自由能变和反应速率常数kex.计算结果表明:GP-SM//MP2-PCM和GP-SM-PCM//MP2-PCM模型得到的kex相近,并且与文献值相符,说明GP-SM//MP2-PCM模型可以充分考虑真实溶剂效应和主体溶剂效应,适用于Al(H3O)63+体系水交换反应的模拟.  相似文献   

4.
We studied the transferability of the localized orbitals (LOs) of interacting Ne atoms using several basis sets. Both at SCF and at MP2 and MP3 levels, the contributions of the LOs have been calculated and discussed for the Ne2 and Ne3 systems. It was shown that for the LOs the transferability is satisfied to a good extent and due to the transferability the interaction energy at the correlated level can be calculated by using only the LOs of the supermolecule. The basis set superposition error (BSSE) is simply extracted from the intramolecular parts of the correlation energy. The two- and three-body interaction energies have been investigated for the studied systems. © John Wiley & Sons, Inc.  相似文献   

5.
6.
Potential energy curves for the parallel-displaced, T-shaped and sandwich structures of the benzene dimer are computed with density fitted local second-order M?ller-Plesset perturbation theory (DF-LMP2) as well as with the spin-component scaled (SCS) variant of DF-LMP2. While DF-LMP2 strongly overestimates the dispersion interaction, in common with canonical MP2, the DF-SCS-LMP2 interaction energies are in excellent agreement with the best available literature values along the entire potential energy curves. The DF-SCS-LMP2 dissociation energies for the three structures are also compared with new complete basis set estimates of the interaction energies obtained from accurate coupled cluster (CCSD(T)) and DF-SCS-MP2 calculations. Since LMP2 is essentially free of basis set superposition errors, counterpoise corrections are not required. As a result, DF-SCS-LMP2 is computationally inexpensive and represents an attractive method for the study of larger pi-stacked systems such as truncated sections of DNA.  相似文献   

7.
A hybrid method is applied that combines second order Møller–Plesset perturbation theory (MP2) for cluster models with density functional theory for periodic (slab) models to obtain structures and energies for methane and ethane molecules adsorbed on the MgO(001) surface. Single point calculations are performed to estimate the effect of increasing the cluster size on the MP2 energies and to evaluate the difference between coupled cluster (CCSD(T)) and MP2 energies. The final estimates of the adsorption energies are 12.9 ± 1.3 and 18.9 ± 1.8 kJ/mol for CH4 and C2H6, respectively. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
The water-methanol dimer can adopt two possible configurations (WdM or MdW) depending on whether the water or the methanol acts as the hydrogen bond donor. The relative stability between the two configurations is less than 1 kcal/mol, and as a result, this dimer has been a challenging system to investigate using either theoretical or experimental techniques. In this paper, we present a systematic study of the dependence of the geometries, interaction energies, and harmonic frequencies on basis sets and treatment of electron correlation for the two configurations. At the highest theory level, MP2/aug-cc-pVQZ//MP2/aug-cc-pVTZ, interaction energies of -5.72 and -4.95 kcal/mol were determined for the WdM and MdW configurations, respectively, after correcting for basis set superposition error using the Boys-Bernardi counterpoise scheme. Extrapolating to the complete basis set limit resulted in interaction energies of -5.87 for WdM and -5.16 kcal/mol for MdW. The energy difference between the two configurations is larger than the majority of previously reported values, confirming that the WdM complex is preferred, in agreement with experimental observations. The effects that electron correlation have on the geometry were investigated by performing optimization at the MP2(full), MP4, and CCSD levels of theory. The approach trajectories for the formation of each dimer configuration are presented and the importance of these trajectories in the development of parameters for use in classical force fields is discussed.  相似文献   

9.
The accuracy of Møller–Plesset (MP) perturbation theory and coupled‐cluster (CC) theory can be significantly improved, at essentially no increase in computational cost, by using summation approximants that model the way in which these theories converge to the full configuration interaction limit. Approximants for MP4 and CCSD(T) are presented, their size scaling is analyzed, and the functional analysis of the MP energy, on which the MP4 approximant is based, is discussed. The MP approximants are shown to have a form that is appropriate for describing resonance energies. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

10.
The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.g., 6-31G(*)) provides fairly reasonable intermolecular separation; (ii) geometry optimization with extended basis sets at the MP2 level underestimates the intermolecular distances compared to the reference CCSD(T) results, whereas the MP2/cc-pVTZ counterpoise-corrected optimization agrees well with the reference geometries and, therefore, is recommended as a next step for improving MP2/cc-pVTZ geometries; (iii) the stabilization energy of stacked nucleic acids base pairs depends considerably on the method used for geometry optimization, so the use of reliable geometries, such as counterpoise-corrected MP2/cc-pVTZ ones, is recommended; (iv) the density functional theory methods fail completely in locating the energy minima for stacked structures and when the geometries from MP2 calculations are used, the resulting stabilization energies are strongly underestimated; (v) the self-consistent charges-density functional tight binding method, with inclusion of the empirical dispersion energy, accurately reproduces interaction energies and geometries of dispersion-bonded (stacked) complexes; this method can thus be recommended for prescanning the potential energy surfaces of van der Waals complexes.  相似文献   

11.
Intramolecular nonbonding interactions between chalcogen atoms in a series of ortho substituted arylselenides (S/O...Se-Y, with Y = -Me, -CN, -Cl, and -F) are quantified using the coupled cluster CCSD(T)/cc-pVDZ level of theory. A homodesmic reaction method as well as an ortho-para approach are employed in evaluating the strength of intramolecular interactions. Comparison of the results obtained using the ab initio MP2 method and pure and hybrid density functional theories are performed with that of the coupled cluster values to assess the quality of different density functionals in evaluating the strength of nonbonding interactions. The interaction energies are found to be higher when the thioformyl group acts as the donor and the Se-F bond acts as the acceptor. In a given series with the same donor atom, the strength of the interaction follows the order Me < CN < Cl < F, exhibiting fairly high sensitivity to the group attached to selenium (Se-Y). Analysis of electron density at the S/O...Se bond critical point within the Atoms in Molecule framework shows a very good correlation with the computed intramolecular interaction energies.  相似文献   

12.
The MP2 (the second-order M?ller-Plesset calculation) and CCSD(T) (coupled cluster calculation with single and double substitutions with noniterative triple excitations) interaction energies of all-trans n-alkane dimers were calculated using Dunning's [J. Chem. Phys. 90, 1007 (1989)] correlation consistent basis sets. The estimated MP2 interaction energies of methane, ethane, and propane dimers at the basis set limit [EMP2(limit)] by the method of Helgaker et al. [J. Chem. Phys. 106, 9639 (1997)] from the MP2/aug-cc-pVXZ (X=D and T) level interaction energies are very close to those estimated from the MP2/aug-cc-pVXZ (X=T and Q) level interaction energies. The estimated EMP2(limit) values of n-butane to n-heptane dimers from the MP2/cc-pVXZ (X=D and T) level interaction energies are very close to those from the MP2/aug-cc-pVXZ (X=D and T) ones. The EMP2(limit) values estimated by Feller's [J. Chem. Phys. 96, 6104 (1992)] method from the MP2/cc-pVXZ (X=D, T, and Q) level interaction energies are close to those estimated by the method of Helgaker et al. from the MP2/cc-pVXZ (X=T and Q) ones. The estimated EMP2(limit) values by the method of Helgaker et al. using the aug-cc-pVXZ (X=D and T) are close to these values. The estimated EMP2(limit) of the methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane dimers by the method of Helgaker et al. are -0.48, -1.35, -2.08, -2.97, -3.92, -4.91, -5.96, -6.68, -7.75, and -8.75 kcal/mol, respectively. Effects of electron correlation beyond MP2 are not large. The estimated CCSD(T) interaction energies of the methane, ethane, propane, and n-butane dimers at the basis set limit by the method of Helgaker et al. (-0.41, -1.22, -1.87, and -2.74 kcal/mol, respectively) from the CCSD(T)/cc-pVXZ (X=D and T) level interaction energies are close to the EMP2(limit) obtained using the same basis sets. The estimated EMP2(limit) values of the ten dimers were fitted to the form m0+m1X (X is 1 for methane, 2 for ethane, etc.). The obtained m0 and m1 (0.595 and -0.926 kcal/mol) show that the interactions between long n-alkane chains are significant. Analysis of basis set effects shows that cc-pVXZ (X=T, Q, or 5), aug-cc-pVXZ (X=D, T, Q, or 5) basis set, or 6-311G** basis set augmented with diffuse polarization function is necessary for quantitative evaluation of the interaction energies between n-alkane chains.  相似文献   

13.
Clusters of CO(2) are a subject of detailed experimental as well as theoretical investigations due to their interesting applications. In the present article, CO(2) clusters (n = 6 to 13) are studied at the MP2 level of theory. The clusters are grown using a cluster building algorithm developed by our group and the larger ones are optimized at the MP2/aug-cc-pVDZ level by employing a Molecular Tailoring Approach (MTA). Vibrational spectra of these clusters are also calculated at this level of theory within MTA. The computed vibrational frequencies for an asymmetric C-O stretch generally exhibit a blue shift with increasing cluster size. This observation is in agreement with the experimental results. MTA-single point energies for each cluster size at the MP2/aug-cc-pVTZ level are also calculated for estimating the interaction energies at the complete basis set limit.  相似文献   

14.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

15.
The linear and second-order nonlinear susceptibilities of the urea crystal have been evaluated by applying the supermolecule approach. Calculations performed at the time-dependent Hartree-Fock (TDHF) level using the Austin model (AM1) semiempirical Hamiltonian have first demonstrated the almost additive character of the essential polarizability and first hyperpolarizability components. In fact, the only exception concerns the chi(cc) ((1)) component when stacking urea molecules along the c axis, i.e., the axis of the hydrogen bonds. This behavior has been confirmed by ab initio calculations on small clusters. The macroscopic quantities have then been determined by adopting the multiplicative scheme and by correcting the TDHF/AM1 values for missing electron correlation by means of density functional theory and coupled cluster method. The reliability of the multiplicative scheme was demonstrated for clusters as large as 3ax3bx3c. While the electron correlation correction factors are similar for a single molecule and different small clusters, the global performance of the scheme differs for the linear and nonlinear responses. For the second-order nonlinear susceptibility, our predictions are in good agreement with experiment, while for the linear susceptibility and the associated refractive index, our predictions underestimate the experimental values. The limitations of our approach may be attributed to its inability to account for more subtle cooperative effects, like those associated with a network of hydrogen bonds. Together with other works, the supermolecule calculations confirm that the sign of chi(abc) ((2)) is negative, contrary to an estimate from band structure calculation.  相似文献   

16.
An efficient implementation of the "cluster-in-molecule" (CIM) approach is presented for performing local electron correlation calculations in a basis of orthogonal occupied and virtual localized molecular orbitals (LMOs). The main idea of this approach is that significant excitation amplitudes can be approximately obtained by solving the coupled cluster (or Moller-Plesset perturbation theory) equations of a series of "clusters," each of which contains a subset of occupied and virtual LMOs. In the present implementation, we have proposed a simple approach for constructing virtual LMOs of clusters, and new ways of constructing clusters and extracting the correlation contributions from calculations on clusters, which are more efficient than those suggested in the original work. More importantly, linear scaling of computational time of the CIM approach is achieved by evaluating the transformed two-electron integrals over LMOs using simple truncation techniques in limited operations (independent of the molecular size). With typical thresholds, for a variety of molecules our test calculations demonstrate that more than 99% of the conventional MP2 or coupled cluster with doubles correlation energies can be recovered in the present CIM approach.  相似文献   

17.
18.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

19.
Structures, energetics, and spectra of Br(-).nCO(2) (n = 1-8) clusters are studied based on ab initio electronic structure theory. The geometry of each size of clusters is evaluated by employing second-order Moller-Plesset (MP2) perturbation theory. It is observed that the solvent CO(2) molecules approach the bromide moiety from one side in an asymmetric fashion except for the Br(-).8CO(2) cluster. Simple electrostatic model for charge-quadrupole interactions is valid for the Br(-).nCO(2) clusters. Reduced variational space based energy decomposition method shows that the electrostatic interaction is the major component and polarization and charge transfer energies are the other significant components of the total interaction energy. Both adiabatic and vertical electron detachment energies and solvation energies are calculated at MP2 level of theory. We have observed an excellent agreement between theory and experiment for the vertical detachment and solvation energies. Calculated quantities based on the analytical expression which connects the finite domain to macroscopic one are found to be very good in agreement with the available experimental results. The present study reveals a 2.6 eV increase in the detachment energy of bromide anion due to the solvation effect of CO(2), which is relatively small compared to that of the corresponding 4.7 eV increase in detachment energy in water.  相似文献   

20.
Scaled MP3 interaction energies calculated as a sum of MP2/CBS (complete basis set limit) interaction energies and scaled third‐order energy contributions obtained in small or medium size basis sets agree very closely with the estimated CCSD(T)/CBS interaction energies for the 22 H‐bonded, dispersion‐controlled and mixed non‐covalent complexes from the S22 data set. Performance of this so‐called MP2.5 (third‐order scaling factor of 0.5) method has also been tested for 33 nucleic acid base pairs and two stacked conformers of porphine dimer. In all the test cases, performance of the MP2.5 method was shown to be superior to the scaled spin‐component MP2 based methods, e.g. SCS–MP2, SCSN–MP2 and SCS(MI)–MP2. In particular, a very balanced treatment of hydrogen‐bonded compared to stacked complexes is achieved with MP2.5. The main advantage of the approach is that it employs only a single empirical parameter and is thus biased by two rigorously defined, asymptotically correct ab‐initio methods, MP2 and MP3. The method is proposed as an accurate but computationally feasible alternative to CCSD(T) for the computation of the properties of various kinds of non‐covalently bound systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号