首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is commonly acknowledged that roughness decreases the aptitude of simple liquids to exhibit flow with slip at solid interfaces. Most available studies have, however, been conducted on substrates for which both the surface chemistry and the roughness were varied simultaneously, making it difficult to identify their respective role on wall slip. To overcome this difficulty, we have developed a series of surfaces formed by grafting hyperbranched polymeric nanoparticles on a smooth, dense, self-assembled monolayer of SiH-terminated short poly(dimethylsiloxane) oligomers, allowing us to vary independently the surface density, the height, and the width of the grafted nanoparticles, and thereby the roughness parameters, while keeping similar surface chemistry. On such substrates, the boundary condition for the flow velocity of hexadecane has been characterized through near-field laser velocimetry. We demonstrate that decreasing the wavelength of the roughness at a fixed height strongly decreases slip, while increasing the height of the nanoparticles at a fixed aspect ratio of the roughness also dramatically affects slippage.  相似文献   

2.
Using event-driven molecular dynamics simulations, we quantify how the self diffusivity of confined hard-sphere fluids depends on the nature of the confining boundaries. We explore systems with featureless confining boundaries that treat particle-boundary collisions in different ways and also various types of physically (i.e., geometrically) rough boundaries. We show that, for moderately dense fluids, the ratio of the self diffusivity of a rough wall system to that of an appropriate smooth-wall reference system is a linear function of the reciprocal wall separation, with the slope depending on the nature of the roughness. We also discuss some simple practical ways to use this information to predict confined hard-sphere fluid behavior in different rough-wall systems.  相似文献   

3.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

4.
The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.  相似文献   

5.
Using nonequilibrium molecular dynamics simulations, we study the non-Newtonian rheology of a microscopic sample of simple fluid. The calculations were performed using a configurational thermostat which unlike previous nonequilibrium molecular dynamics or nonequilibrium Brownian dynamics methods does not exert any additional constraint on the flow profile. Our findings are in agreement with experimental results on concentrated "hard sphere"-like colloidal suspensions. We observe: (i) a shear thickening regime under steady shear; (ii) a strain thickening regime under oscillatory shear at low frequencies; and (iii) shear-induced ordering under oscillatory shear at higher frequencies. These results significantly differ from previous simulation results which showed systematically a strong ordering for all frequencies. They also indicate that shear thickening can occur even in the absence of a solvent.  相似文献   

6.
Computer simulation results are used to examine the shear-dependent viscosity of simple fluids. The prime purpose of the investigation was to examine the possible non-newtonian effects when the particles in a fluid interact through central forces. A range of spherical interactions was examined, including both potentials with a barrier and simple colloidal models, and in all cases the fluids were shear-thinning. The non-equilibrium radial distribution function for a soft potential is considerably more sensitive to shear rate than is that for the strongly repulsive model. Calculations of the hydrostatic pressure show that it increases with shear rate, demonstrating that the phenomena of shear thickening and shear dilatency — used interchangeably in the literature — are separate phenomena.  相似文献   

7.
We use quantum-correction factors to calculate approximately the quantum velocity time-correlation function (TCF) of supercritical Lennard-Jones argon from the classical TCF. We find that for this quite classical system, several different quantum-correction schemes yield essentially identical results for the real and imaginary parts of the quantum TCF, and also agree well with the recent forward-backward semiclassical dynamics (FBSD) results of Wright and Makri [J. Chem. Phys. 119, 1634 (2003)]. We also consider a more quantum-mechanical fluid of lighter atoms (neon) at a lower temperature. In this case different quantum-correction schemes give different results. FBSD calculations show that the harmonic quantum correction factor works the best for this system  相似文献   

8.
The surface oxidation of ruthenium catalysts with different roughness factor values has been analyzed. It is shown that electro formation of oxidized species on the exposed surface of ruthenium is strongly affected by the rougher characteristics of the surface. This effect has been explained through the addition and removal of protons to and from the oxidized species.
. , . .
  相似文献   

9.
We explored a liquid slip, referred to as the Navier slip, at liquid-solid interface. Such a slip is provoked by the physicochemical features of the liquid-solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid-solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell's slip for Newtonian gases.  相似文献   

10.
Highly liquid repellent surfaces have been obtained by the combination of roughness and hydrophobicity. Studies have reported that the flow over such surfaces exhibits larger boundary slip as compared to the smooth hydrophobic surfaces. However, the surface roughness can also lead to apparent slip. Thus, the effect of the two factors, that is, wettability and roughness, needs to be segregated. In this study, we have measured the slippage of water on rough hydrophilic and hydrophobic surfaces using colloidal probe atomic force microscopy technique (CP‐AFM). Results showed that the effect of surface roughness on the measured slip is dominant over that of wettability. It was also found that slip on surfaces with sparsely distributed asperities is highly local and measurements on various locations give dissimilar results. The results suggested that the main reason of the larger slip, on rough hydrophobic surfaces, is likely to be the roughness and not the hydrophobicity. Moreover, it was also found that the slip does not vary considerably with the increase or decrease in the shear rate. Most likely, this kind of slip phenomena is caused by the apparent decrease of the drag force, because the nanoasperities on the surface restrict the probe from reaching the surface properly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Surface roughness occurs in a wide variety of processes where it is both difficult to avoid and control. When two bodies are separated by a small distance the roughness starts to play an important role in the interaction between the bodies, their adhesion, and friction. Control of this short-distance interaction is crucial for micro and nanoelectromechanical devices, microfluidics, and for micro and nanotechnology. An important short-distance interaction is the dispersion forces, which are omnipresent due to their quantum origin. These forces between flat bodies can be described by the Lifshitz theory that takes into account the actual optical properties of interacting materials. However, this theory cannot describe rough bodies. The problem is complicated by the nonadditivity of the dispersion forces. Evaluation of the roughness effect becomes extremely difficult when roughness is comparable with the distance between bodies. In this paper we review the current state of the problem. Introduction for non-experts to physical origin of the dispersion forces is given in the paper. Critical experiments demonstrating the nonadditivity of the forces and strong influence of roughness on the interaction between bodies are reviewed. We also describe existing theoretical approaches to the problem. Recent advances in understanding the role of high asperities on the forces at distances close to contact are emphasized. Finally, some opinions about currently unsolved problems are also presented.  相似文献   

12.
Analytic expressions are derived for the frequency distribution, P(f), of pair forces, f, and those of their α-Cartesian component, f(α), or P(f(α)), for some typical model simple fluids, expressed in terms of the radial distribution function and known constants. For strongly repulsive inverse power (IP), exponential and Yukawa purely repulsive potentials, P(f) diverges at the origin approximately as ~f(-1), but with different limiting analytic forms. P(f(α)) is also shown to diverge as ~f(-1) as f → 0 for the IP fluid. For the Lennard-Jones potential fluid, P(f) is finite for all f ≥ 0 but has two singularities for negative f, corresponding to the zero force limit (i.e., f → 0(-)) and the point of inflection in the potential. The corresponding component force distribution is singular as f(α) → 0 from both positive and negative force sides. The large force limit of P(f), which originates from the close neighbor interactions, is nearly exponential for the IP and LJ fluids, as is also found for granular materials. A more complete picture of force distributions in off-lattice particulate systems as a function of force law and state point (particularly the extent of "thermalization" of the particles) is provided.  相似文献   

13.
The article reports on the wetting properties of silicon-based materials as a function of their roughness and chemical composition. The investigated surfaces consist of hydrogen-terminated and chemically modified atomically flat crystalline silicon, porous silicon and silicon nanowires. The hydrogenated surfaces are functionalized with 1-octadecene or undecylenic acid under thermal conditions. The changes occurring upon surface functionalization are characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) spectroscopy and water contact angle measurements. By increasing the surface roughness, the static water contact angle increases. The combination of high surface roughness with chemical functionalization with water repellent coating (1-octadecene) enables reaching superhydrophobicity (water contact angle greater than 150°) for silicon nanowires.  相似文献   

14.
Rheological characterization through capillary viscometry of molten polymers that slip at solid walls is quite a challenging task. In fact, it is based on an indirect measurement that introduces remarkable error amplifications, mainly because of the Mooney procedure. Sometimes these are so large that unphysical results are obtained. In this paper we study these issues analytically, using a particular power law fluid as a test model. Interestingly, it is found that there is dependence on the fluid characteristics, such as the shear thinning behavior. Two software programs are provided in the Mendeley Data Repository. One quantifies the error amplification, the other one can be used by interested researchers for properly designing the testing setup (e.g. the most convenient choice for the capillary diameters). In order to use the programs, though, the material constants of the fluid that is intended to be characterized must be known at least approximately.  相似文献   

15.
Spreading of different types of fluid on solids under an impressed force is an interesting problem. Here we study spreading of four fluids, having different hydrophilicity and viscosity on two substrates - glass and perspex, under an external force. The area of contact of fluid and solid is video-photographed and its increase with time is measured. The results for different external forces can be scaled onto a common curve. We try to explain the nature of this curve on the basis of existing theoretical treatment where either the no-slip condition is used or slip between fluid and substrate is introduced. We find that of the eight cases under study, in five cases quantitative agreement is obtained using a positive slip coefficient. The remaining three can be explained with a negative slip coefficient, equivalent to a sticking effect.  相似文献   

16.
The effect of surface roughness on the quartz crystal microbalance with dissipation monitoring (QCM-D) response was investigated with emphasis on determining the amount of trapped water. Surfaces with different nanoroughnesses were prepared on silica by self-assembly of cationic surfactants with different packing parameters. We used surfactants with quaternary ammonium bromide headgroups: the double-chained didodecyltrimethylammonium bromide (C12)2DAB (DDAB), the single-chained hexadecyltrimethylammonium bromide C16TAB (CTAB), and dodecyltrimethyl-ammonium bromide C12TAB (DTAB). The amount of trapped water was obtained from the difference between the mass sensed by QCM-D and the adsorbed amount detected by optical reflectometry. The amount of water, which is sensed by QCM-D, was found to increase with the nanoroughness of the adsorbed layer. The water sensed by QCM-D cannot be assigned primarily to hydration water, because it differs substantially for adsorbed surfactant layers with similar headgroups but with different nanoscale topographies.  相似文献   

17.
The distribution function, W(F), of the magnitude of the net force, F, on particles in simple fluids is considered, which follows on from our previous publication [A. C. Bran?ka, D. M. Heyes, and G. Rickayzen, J. Chem. Phys. 135, 164507 (2011)] concerning the pair force, f, distribution function, P(f), which is expressible in terms of the radial distribution function. We begin by discussing the force on an impurity particle in an otherwise pure fluid but later specialize to the pure fluid, which is studied in more detail. An approximate formula, expected to be valid asymptotically, for W(F) referred to as, W(1)(F) is derived by taking into account only binary spatial correlations in the fluid. It is found that W(1)(F) = P(f). Molecular dynamics simulations of W for the inverse power (IP) and Lennard-Jones potential fluids show that, as expected, W(F) and P(f) agree well in the large force limit for a wide range of densities and potential forms. The force at which the maximum in W(F) occurs for the IP fluids follows a different algebraic dependence with density in low and high density domains of the equilibrium fluid. Other characteristic features in the force distribution functions also exhibit the same trends. An exact formula is derived relating W(F) to P(x)(F(x)), the distribution function of the x-cartesian components of the net force, F(x), on a particle. W(F) and P(x)(F(x)) have the same analytical forms (apart from constants) in the low and high force limits.  相似文献   

18.
Kelvin probe force microscopy (KPFM) and atomic force microscopy (AFM) are employed to probe the surface potential and topography of octadecyltrichlorosilane [OTS, CH3(CH2)17SiCl3] self-assembled monolayers (SAMs) on oxidized Si(100) and polycrystalline silicon surfaces as a function of deposition temperature and substrate roughness with particular attention paid to the monitoring of SAM adsorption on highly rough surfaces. In these studies, it is found that the surface potential magnitude of the adsorbed layer is larger for monolayers formed in the liquid-condensed (LC) phase than for those formed in the liquid-expanded (LE) phase. Experiments on individual islands in the LC phase show that surface potential and monolayer thickness increase with increasing island size; islands larger than about 1.5 microm reach maximum potential and height values of 48+/-4 mV and 2.7+/-0.1 nm, with respect to the underlying oxidized surface. It is also shown that KPFM is suitable for the study of monolayer adsorption on polycrystalline surfaces, for which preexisting surface texture makes the use of traditional scanning probe techniques for molecular recognition difficult. In these scenarios it is shown that OTS growth occurs preferentially along grain boundaries in fingerlike patterns having a molecular arrangement comparable to that of LC phase islands on atomically smooth silicon. These findings indicate that surface potential measurements provide a highly accurate, local means of probing monolayer morphology on rough surfaces encountered in many applications.  相似文献   

19.
Droplet morphologies on particles with macroscopic surface roughness   总被引:2,自引:0,他引:2  
The equilibrium configuration of liquid droplets on the surface of macroscopically rough solid particles was determined by numerical simulations using the volume-of-fluid (VOF) method. The fractional surface coverage of the particle as a function of the droplet size, equilibrium contact angle, and the particle surface roughness amplitude and correlation length has been systematically investigated. Droplet size and contact angle were found to generally have a stronger effect on surface coverage than particle surface roughness. Because of droplet coalescence, a relatively large variation in surface coverage was observed for any given total liquid volume, particularly for larger values of the equilibrium contact angle.  相似文献   

20.
Electron inelastic mean free path can be obtained from a measured elastic peak electron spectroscopy spectrum combined with a Monte Carlo simulation. It is thus necessary to know the influence of various experimental factors to the measured and calculated results. This work investigates the effect of the surface roughness or the surface topography on the intensity of the elastic peak. A Monte Carlo simulation, by taking into account of realistic surface roughness for both Gaussian and non‐Gaussian type rough surfaces experimentally prepared, has been employed to study the surface topography effect. The simulations of elastic peak electron spectroscopy were performed for both planar and rough Al and Cu surfaces and for varied primary energies ranging from 200 to 2000 eV. To quantify the surface roughness effect, the surface roughness parameter is introduced according to the ratio of elastic peak intensities between a rough surface and an ideal planar surface. Simulation results have shown that surface roughness parameter is important in a certain range of emission angle and particularly for large emission angles. For grazing emission, the elastic peak intensity can be largely enhanced by roughness even at nanometer scale. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号