首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The simultaneous ion-exclusion/cation-exchange separation column packed with a polymethacrylate-based weakly acidic cation-exchange resin of 3 microm particle size was used to achieve the simultaneous high-speed separation of anions and cations (Cl(-), NO3(-), SO4(2-), Na(+), K(+), NH4(+), Ca(2+) and Mg(2+)) commonly found in environmental samples. The high-speed simultaneous separation is based on a combination of the ion-exclusion mechanism for the anions and the cation-exchange mechanism for cations. The complete separation of the anions and cations was achieved in 5 min by elution with 15 mM tartaric acid-2.5 mM 18-crown-6 at a flow-rate of 1.5 ml/min. Detection limits at S/N=3 ranged from 0.36 to 0.68 microM for anions and 0.63-0.99 microM for cations. This method has been applied to the simultaneous determination of anions and cations in several environmental waters with satisfactory results.  相似文献   

2.
Vacancy ion-exclusion chromatography (VIEC) for inorganic acids such as H(2)SO(4), HCl, H(3)PO(4), HNO(3), HI and HF is tested on a polymethacrylate-based weakly acidic cation-exchange resin column in the H(+)-form. That is, mixture of inorganic acids in the mobile phase is adsorbed to the resin phase passing through the separation column, and each vacant peak induced by injecting water is determined. Retention times are dependent on the degrees of retention for each analyte in the resin phase. In VIEC, well-shaped peaks of inorganic acids are produced, leading to efficient separations. However, retention behaviors of inorganic acids were strongly affected by the concentrations of the acids in the mobile phase. Sulfosalicylic acid was mixed with inorganic acids in the mobile phase prior to the introduction of a separation column in order to obtain the well-resolutions in the lower concentrations of the acids. By using this method, the separations of inorganic acids could be achieved in the range of 0.01-1 mM, and the linear ranges could be extended over two-orders of magnitude. This is considered since the protonated carboxylic groups fixed on the resin phase were increased with increasing the acid concentrations in the mobile phase, and the penetration effects for the acids to the resin phase were thus enhanced. The detection limits (S/N=3) were below 1.0 microM for all analyte acids. Precision values for retention times were below 0.32% and for peak area were below 0.91%.  相似文献   

3.
A new and simple approach is described for the determination of the haloacetic acids (such as mono-, di- and trichloroacetic acids) usually found in drinking water as chlorination by-products after disinfection processes and acetic acid. The new approach, termed vacancy ion-exclusion chromatography, is based on an ion-exclusion mechanism but using the sample solution as the mobile phase, pure water as the injected sample, and a weakly acidic cation-exchange resin column (TSKgel OApak-A) as the stationary phase. The addition of sulfuric acid to the mobile phase results in highly sensitive conductivity detection with sharp and well-shaped peaks, leading to excellent and efficient separations. The elution order was sulfuric acid, dichloroacetic acid, monochloroacetic acid, trichloroacetic acid, and acetic acid. The separation of these acids depends on their pKa values. Acids with lower pKa values were eluted earlier than those with higher pKa, except for trichloroacetic acid due to a hydrophobic-adsorption effect occurring as a side-effect of vacancy ion-exclusion chromatography. The detection limits of these acids in the present study with conductivity detection were 3.4 microM for monochloroacetic acid, 0.86 microM for dichloroacetic acid and 0.15 microM for trichloroacetic acid.  相似文献   

4.
In this preliminary study, a new approach to ion-exclusion chromatography is proposed to overcome the relatively poor conductivity detection response which occurs in ion-exclusion chromatography when acids are added to the eluent in order to improve peak shape. This approach, termed vacancy ion-exclusion chromatography, requires the sample to be used as eluent and a sample of water to be injected onto a weakly acidic cation-exchange column (TSKgel OApak-A). Vacancy peaks for each of the analytes appear at the retention times of these analytes. Highly sensitive conductivity detection is possible and sharp, well-shaped peaks are produced, leading to efficient separations. Retention times were found to be affected by the concentration of the analytes in the eluent, and also by the presence of an organic modifier such as methanol in the eluent. Detection limits for oxalic, formic, acetic, propionic, butyric and valeric acids were 0.1, 0.2, 0.3, 0.3, 0.4 and 0.5 microM, respectively, and linear ranges for some acids extended over two orders of magnitude. Precision values for retention times were 0.21% and for peak areas were <1.90%. The vacancy ion-exclusion chromatography method was found to give detection responses four to 10 times higher than conventional ion-exclusion chromatography using sulfuric acid eluent and two to five times higher than conventional ion-exclusion chromatography using benzoic acid eluent.  相似文献   

5.
Determination of aromatic carboxylic acids by conventional ion-exclusion chromatography is relatively difficult and methods generally rely on hydrophobic interaction between the solute and the resin. To overcome the difficulties in determining aromatic carboxylic acids a new approach is presented, termed vacancy ion-exclusion chromatography, which is based on use of the sample as mobile phase and an injection of aqueous 10% methanol onto a weakly acidic cation-exchange column (TSKgel OApak-A). Highly sensitive conductivity detection occurred with sharp and well-shaped peaks, leading to very efficient separations. The effects of sulfuric acid concentration added to the mobile phase, flow-rate, and column temperature on the retention volume of tested aromatic carboxylic acids was investigated. Retention times were found to be affected by the concentration of the analytes in the mobile phase and to some extent also by the addition of an organic modifier such as methanol to the injected water sample. Separation of sulfuric acid (SA), naphthalenetetracarboxylic acid (NTCA), phthalic acid (PA) and benzoic acid (BA) was satisfactory using this new approach. Detection limits were 0.66, 0.67, 0.42 and 0.86 microM and detector responses were linear in the range 1-100, 1-80, 2.5-100 and 10-40 microM, for SA, NTCA, PA and BA, respectively. Precision for retention times was 0.36% and for peak areas was 1.5%.  相似文献   

6.
In this study, a cation-exchange resin (CEX) of the K+-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH3COOH) separated by a weakly acidic CEX column of the H+-form converts into that of the K+-form (e.g., CH3COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO3) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO3) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0 mM. The detection limits (signal-to-noise ratio = 3) range from 0.10 μM to 0.39 μM in this system, as opposed to those in the range of 0.24-7.1 μM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample.  相似文献   

7.
The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.  相似文献   

8.
Fast analysis of thiocyanate by ion-pair chromatography using a silica-based monolithic column and direct conductivity detection was carried out. Chromatographic separation was performed on a Chromolith Speed ROD RP-18e using tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile as eluent. The effects of eluent concentration, eluent pH value, column temperature and flow rate on retention time of thiocyanate were investigated. The optimized chromatographic conditions for the determination of thiocyanate were as follows: 0.25 mmol/L TBA-0.18 mmol/L phthalate-7% acetonitrile (pH 5.5) as eluent, column temperature of 30 ℃, and flow rate of 6.0 mL/min. Retention time of thiocyanate was less than 1 min under the conditions. Common anions (Cl^-, NO3 , SO42 and I^- ) did not interfere with the determination of thiocyanate. Detection limit (S/N = 3) of thiocyanate was 0.96 mg/L. Calibration graph between peak area and the concentration of thiocyanate was linear in the range of 2.0- 100.0 mg/L. Relative standard deviation (RSD) of chromatographic peak area was 1.4% (n = 5). This method has been applied to the determination of thiocyanate in ionic liquids. Recoveries of thiocyanate after spiking were 100.5%.  相似文献   

9.
A simple, selective, and sensitive method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was developed using ion-exclusion/ cation-exchange chromatography with conductimetric detection. A weakly acidic cation-exchange resin column (Tosho TSKgel OA-PAK-A) and a sulfosalicylic acid-methanol-water eluent was used. With a mobile phase comprising 1.25 mM sulfosalicylic acid in methanol-water (7.5:92.5) at 1.2 ml/min, simultaneous separation and detection of the above anions and cations was achieved in about 30 min. Linear calibration plots of peak area versus concentration were obtained over the concentration ranges 0-1.0 mM for anions (R=0.9991) and 0-0.5 mM for cations (R=0.9994). Detection limits calculated at S/N=3 ranged from 4.2 to 14.8 ppb for the anions and from 2.4 to 12.1 ppb for the cations. The reproducibility of retention times was 0.14-0.15% relative standard deviation (RSD) for anions and 0.18-0.31% for cations, and reproducibility of chromatographic peak areas was 1.22-1.75% RSD for anions and 1.81-2.10% for cations. The method was applied successfully to the simultaneous determination of anions and cations in aerosols transported from mainland China to central Japan, as determined by a meteorological satellite data analyzer.  相似文献   

10.
Ding MY  Tanaka K  Hu W  Hasebe K  Haddad PR 《The Analyst》2001,126(5):567-570
A non-suppressed conductivity detection ion chromatographic method using a weakly acidic cation-exchange column (Tosoh TSKgel OApak-A) was developed for the simultaneous separation and determination of common inorganic anions (Cl-, NO3- and SO4(2-)) and cations (Na+, NH4+, K+, Mg2+ and Ca2+). A satisfactory separation of these anions and cations on the weakly acidic cation-exchange column was achieved in 25 min by elution with a mixture of 1.6 mmol L-1 pyridine-2,6-dicarboxylic acid and 8.0 mmol L-1 18-crown-6 at flow rate of 1.0 mL min-1. On this weakly acidic cation-exchange resin, anions were retained by an ion-exclusion mechanism and cations by a cation-exchange mechanism. The linear range of the peak area calibration curves for all analytes were up to two orders of magnitude. The detection limits calculated at S/N = 3 ranged from 0.25 to 1.9 mumol L-1 for anions and cations. The ion-exclusion chromatography-cation-exchange chromatography method developed in this work was successfully applied to the simultaneous determination of major inorganic anions and cations in rainwater, tap water and snow water samples.  相似文献   

11.
Influence of acidic eluent on retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography (ion-exclusion/CEC) were investigated on a weakly acidic cation-exchange resin in the H(+)-form with conductivity. Sensitivities of analyte ions, especially weak acid anions (F(-) and HCOO(-)), were affected with degree of background conductivity level with pK(a1) (first dissociation constant) of acid in eluent. The retention behaviors of anions and cations were related to that of elution dip induced after eluting acid to separation column and injecting analyte sample. These results were largely dependent on the natures of acid as eluent. Through this study, succinic acid as the eluent was suitable for simultaneous separation of strong acid anions (SO(4)(2-), Cl(-), NO(3)(-) and I(-)), weak acid anions (F(-), HCOO(-) and CH(3)COO(-)), and cations (Na(+), K(+), NH(4)(+), Mg(2+) and Ca(2+)). The separation was achieved in 20 min under the optimum eluent condition, 20 mM succinic acid/2 mM 18-crown-6. Detection limits at S/N=3 ranged from 0.10 to 0.51 microM for strong acid anions, 0.20 to 5.04 microM for weak acid anions and 0.75 to 1.72 microM for cations. The relative standard deviations of peak areas in the repeated chromatographic runs (n=10) were in the range of 1.1-2.9% for anions and 1.8-4.5% for cations. This method was successfully applied to hot spring water containing strong acid anions, weak acid anions and cations, with satisfactory results.  相似文献   

12.
Mori M  Itabashi H  Ikedo M  Tanaka K 《Talanta》2006,70(1):174-177
An ion-exclusion chromatographic method for the direct UV detection of non-absorbing inorganic cations such as sodium (Na+), ammonium (NH4+) and hydrazine (N2H5+) ions was developed by connecting an anion-exchange column in the I-form after the separation column. For example, NH4+ is converted to a UV-absorbing molecule, NH4I, by the anion-exchange column in the I-form after the ion-exclusion separation on anion-exchange column in the OH-form with water eluent. As a result, the direct UV detection of Na+, NH4+ and N2H5+ could be successfully obtained as well as the well-resolved separation. The calibration graphs of the analyte cations detected with UV at 230 nm were linear in the range of 0.001-5.0 mM. The detection limits at S/N = 3 of the cations were below 0.1 μM. This method was applied to real water analysis, the determination of NH4+ in river and rain waters, or that of N2H5+ in boiler water, with the satisfactory results. This could be applied also to low- or non-absorbing anions such as fluoride or hydrogencarbonate ions by the combination of a weakly acidic cation-exchange resin in the H+-form as the separation column and the anion-exchange conversion column.  相似文献   

13.
In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.  相似文献   

14.
Summary A metallic copper electrode is employed as a potentiometric detector for reducing carbohydrates after their separation on a cation-exchange column. A post-column reactant solution comprising 1 mM copper (II) and 35 mM ammonia is mixed with the column effluent and the metallic copper electrode provides a steady baseline potential by responding in a Nernstian manner to the level of copper ions present. This in turn is affected by the presence of eluted reducing carbohydrates, leading to an indirect detection method for these species. The method is applied to the detection of maltose, lactose, xylose, glucose, sorbose, fructose and arabinose. The electrode response mechanism is discussed and detection limits in the low nanomole range are reported. The potentiometric detector is shown to be more sensitive than refractive index detection.  相似文献   

15.
Summary Separation and determination of lanthanum, cerium, praseodymium, neodymium and samarium in monazites have been achieved by dynamic ion-exchange chromatography. The ore samples are decomposed by sulfuric acid and the rare earths are separated in a group as oxalates. The rare earth elements are then separated from each other on a column of bonded phase silica by gradient elution with 0.05 to 0.5 M lactic acid (pH 3.5) in the presence of 0.01 M sodium 1-octanesulfonate. Post-column reaction with Arsenazo III is used for detection and quantification of the individual rare earth elements. Results are quoted for lanthanum, cerium, praseodymium, neodymium and samarium in monazites. Detection limit is 1 μg ml−1 with a S/N ratio of 3. The separation is complete within 27 min valley to valley resolution. Precision of better than 1% can usually be obtained.  相似文献   

16.
The effect of dissolved carbon dioxide on the glass transition temperature of a polymer, PMMA, has been investigated using molecular probe chromatography. The probe solute was iso-octane, and the specific retention volumes of this solute in pure PMMA and mixtures of PMMA with CO2 were measured over a temperature range of 0 to 180°C and CO2 pressures from 1 to 75 atm. The amount of CO2 dissolved in the polymer was calculated from a model fit to previously published solubility data determined chromatographically. Classical van't Hoff-type plots were used to determine the glass transition temperature of CO2-impregnated PMMA from low pressure up to 46 atm of CO2. Solvent-induced plasticization was observed with the glass transition temperature decreasing by about 40°C. At some pressures, glass transitions at low temperatures could not be determined from the van't Hoff plots because of the proximity of the polymer glass transition temperature to the gas–liquid transition temperature for CO2. For these pressures, a new method was developed to determine the glass transition composition. The glass transition pressure was then calculated from the measured composition and temperature using an isotherm model. In every case, the glass transition temperature decreased linearly with increasing concentration of CO2 in the polymer. However, at higher compositions, the glass transition pressure decreased with increasing composition and decreasing temperature. The observed retention volume of iso-octane with PMMA in a glassy state was correlated with an adsorption model developed from a theory for liquid–solid chromatography derived by Martire. This model accurately described the observed decrease in retention of iso-octane by adsorption on the surface of glassy PMMA with increasing concentration of CO2 dissolved in the polymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2537–2549, 1998  相似文献   

17.
A unified ion-exclusion chromatography(IEC) system for monitoring anionic and cationic nutrients like NH + 4,NO 2,NO 3,phosphate ion,silicate ion and HCO 3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV) detection at 210 nm for determining NH + 4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO 2 and NO 3 on cation-exchange separation column in H + form,the IEC with UV-detection at 210 nm for determining HCO 3 on cation-exchange separation column in H + form connected with anion-exchange UV-conversion column in I form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.  相似文献   

18.
Summary The relation is proposed for the dependence of reduced plate height, h, on reduced velocity in carbon dioxide, supercritical fluid chromatography with packed columns. The classical Knox model does not take into account the density drop in the column which produces a peak-broadening. A supplementary coefficient with a parabolic dependence on velocity must be added and then a good fit between experimental results and theory is observed. Finally, the influence of other parameters such as pressure, capacity factor and solute molecular area is discussed.  相似文献   

19.
Summary Evaporative light scattering detectors have, in recent years, gained acceptance in chromatography with dense mobile phases i.e. liquid and supercritical fluid chromatography. In the present work an instrument of this type has been used in packed column supercritical fluid chromatography with carbon dioxide/methanol mixtures. Detector response and signal-to-noise ratios have been determined using squalane as test compound. Nebulizer gas flow, evaporator temperature, photomultiplier sensitivity, and mobile phase composition were found to have an influence on instrument performance. With this type of detector the field of packed column SFC applications can be extended to include non-UV-absorbing substances even when mixed mobile phases or composition gradients are necessary for the separation.  相似文献   

20.
Low‐temperature high‐performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at –35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low‐temperature high‐performance liquid chromatography at temperatures from –35 to –5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl‐silica (C18) column provided reversed phase mode separation, and a bare silica‐gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately –15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high‐performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号