首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A growing number of approaches to “staple” α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here, the replacement of l -cysteine with “cysteine analogues” in combinations of different stereochemistry, side chain length and beta-carbon substitution, is explored to examine the influence that the thiol-containing residue(s) has on target protein binding affinity in a well-explored model system, p53–MDM2/MDMX, which is constituted by the interaction of the tumour suppressor protein p53 and proteins MDM2 and MDMX, which regulate p53 activity. In some cases, replacement of one or more l -cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide. Computationally constructed homology models indicate that some modifications, such as incorporating two d -cysteine residues, favourably alter the positions of key functional amino acid side chains, which is likely to cause changes in binding affinity, in agreement with measured surface plasmon resonance data.  相似文献   

2.
A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(−)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2′,6′-dimethoxy-4′-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.  相似文献   

3.
The active site of recombinant hexa-histidine-tagged human monoacylglycerol lipase (hMGL) is characterized by mass spectrometry using the inhibitors 5-((biphenyl-4-yl)methyl)-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701), and N-arachidonylmaleimide (NAM) as probes. Carbamylation of Ser(129) by AM6701 in the putative hMGL catalytic triad demonstrates this residue's essential role in catalysis. Partial NAM alkylation of hMGL cysteine residues 215 and/or 249 was sufficient to achieve approximately 80% enzyme inhibition. Although Cys(215) and/or Cys(249) mutations to alanine(s) did not affect hMGL hydrolytic activity as compared with nonmutated hMGL, the C215A displayed heightened NAM sensitivity, whereas the C249A evidenced reduced NAM sensitivity. These data conclusively demonstrate a sulfhydryl-based mechanism for NAM inhibition of hMGL in which Cys(249) is of paramount importance. Identification of amino acids critical to the catalytic activity and pharmacological modulation of hMGL informs the design of selective MGL inhibitors as potential drugs.  相似文献   

4.
设计系列昆虫抗冻蛋白CfAFP突变体, 通过分子动力学模拟确定各突变体与冰晶的最佳作用模式, 并用半经验分子轨道方法AM1和PM3研究了其与冰晶的相互作用. 结果表明, TXT面上的苏氨酸在蛋白与冰晶相互识别和结合过程中十分关键, 对CfAFP与冰晶间相互作用的贡献大, 用其它疏水或亲水氨基酸残基替换都将削弱抗冻蛋白与冰晶的相互作用强度, 从而降低蛋白的抗冻活性. 但是, 在维系蛋白和冰晶结构匹配的基础上, 疏水基团的增加加强了抗冻蛋白与冰晶的结合, 从而增加蛋白的抗冻活性.  相似文献   

5.
VEGFR2介导肿瘤诱导的血管生成作用, 是抑制肿瘤生长和转移的新靶点. 为深入探讨VEGFR2活性腔性质以及与抑制剂的结合模式, 采用多拷贝同时搜寻法(MCSS)研究VEGFR2活性腔的性质, 然后用分子对接方法对5个已上临床的VEGFR抑制剂与VEGFR2活性腔进行对接计算, 讨论它们的结合模式, 确定与配体结合相关的关键残基. 研究发现: 疏水腔I, II是配体结合的关键区域, 残基Glu915, Cys917是关键的氢键作用位点, Lys866, Glu883和Asp1044形成的极性区域对提高配体亲合力很重要, 疏水腔III和极性腔IV是额外增强配体结合力的区域, IV区的Arg1030可提供额外的氢键作用位点. 本研究可为全新VEGFR2抑制剂的合理药物设计提供理论依据, 为寻找新的抗肿瘤药物奠定基础.  相似文献   

6.
在水溶液中进行了表面活性单体丙烯酰胺基十四烷基磺酸钠(NaAMC14S)与丙烯酰胺(AM)的均相共聚合, 制备了具有微嵌段结构的疏水缔合聚丙烯酰胺NaAMC14S/AM, 合成了阳离子型Gemini表面活性剂二溴化-N,N′-二(二甲基十二烷基)己二铵(C12C6C12Br2), 采用表观粘度法和荧光探针法研究了共聚物NaAMC14S/AM与Gemini表面活性剂C12C6C12Br2的相互作用. 研究结果表明, 疏水缔合聚丙烯酰胺NaAMC14S/AM与Gemini表面活性剂C12C6C12Br2之间存在着很强的相互作用, 既存在静电相互作用, 又存在强烈的疏水相互作用, 表现在以下几方面: C12C6C12Br2的加入, 使共聚物NaAMC14S/AM在浓度小于其临界缔合浓度(cac)时即发生分子间的缔合; C12C6C12Br2在低于其临界胶束浓度时, 就与共聚物NaAMC14S/AM形成混合胶束; 当共聚物的浓度为0.30%(w)时, 随着C12C6C12Br2加入量的增多, 共聚物水溶液的粘度会发生大幅度的增加, 在最大值处粘度竟提高了3个数量级. 研究还发现, 共聚物NaAMC14S/AM与C12C6C12Br2之间的相互作用还与共聚物分子链中的疏水微嵌段含量有关, 疏水微嵌段含量越多, NaAMC14S/AM与C12C6C12Br2之间的相互作用越强, 溶液粘度增加的程度越大.  相似文献   

7.
8.
聚丙烯酸钠吸水性树脂的抗电解质性能   总被引:3,自引:0,他引:3  
丙烯酰胺;聚丙烯酸钠吸水性树脂的抗电解质性能  相似文献   

9.
S-Nitrosylation of specific cysteine residues is a reversible signaling mechanism of nitric oxide (NO) generated by NO synthase (NOS) enzymes. In some proteins, evidence has accumulated that more than one cysteine can be S-nitrosylated; however, it is difficult to distinguish S-nitrosylation on separate cysteine residues. We report a novel simple, sensitive, and specific procedure for nitrosopeptide mapping. Dexras1 is a monomeric G protein whose guanine nucleotide exchange activity is augmented by NO; the identity and number of its S-nitrosylated cysteines is unknown. We describe the radiolabeling of S-nitrosylated cysteine residues in Dexras1. A nitrosopeptide map, generated by two-dimensional peptide chromatography, reveals that only a single cysteine is S-nitrosylated following NO exposure. Mutagenesis of Cys11 abolished the effect of NO donors on Dexras1, implicating this residue in the NO-mediated activation of Dexras1.  相似文献   

10.
The Src-homology-3 (SH3) domain of the Caenorhabditis elegans protein Sem-5 binds proline-rich sequences. It is reported that the SH3 domains broadly accept amide N-substituted residues instead of only recognizing prolines on the basis of side chain shape or rigidity. We have studied the interactions between Sem-5 and its ligands using molecular dynamics (MD), free energy calculations, and sequence analysis. Relative binding free energies, estimated by a method called MM/PBSA, between different substitutions at sites -1, 0, and +2 of the peptide are consistent with the experimental data. A new method to calculate atomic partial charges, AM1-BCC method, is also used in the binding free energy calculations for different N-substitutions at site -1. The results are very similar to those obtained from widely used RESP charges in the AMBER force field. AM1-BCC charges can be calculated more rapidly for any organic molecule than can the RESP charges. Therefore, their use can enable a broader and more efficient application of the MM/PBSA method in drug design. Examination of each component of the free energy leads to the construction of van der Waals interaction energy profiles for each ligand as well as for wild-type and mutant Sem-5 proteins. The profiles and free energy calculations indicate that the van der Waals interactions between the ligands and the receptor determine whether an N- or a Calpha-substituted residue is favored at each site. A VC value (defined as a product of the conservation percentage of each residue and its van der Waals interaction energy with the ligand) is used to identify several residues on the receptor that are critical for specificity and binding affinity. This VC value may have a potential use in identifying crucial residues for any ligand-protein or protein-protein system. Mutations at two of those crucial residues, N190 and N206, are examined. One mutation, N190I, is predicted to reduce the selectivity of the N-substituted residue at site -1 of the ligand and is shown to bind similarly with N- and Calpha-substituted residues at that site.  相似文献   

11.
12.
The recently published crystal structure of the D3 dopamine receptor shows a tightly packed region of aromatic residues on helices 5 and 6 in the space bridging the binding site and what is thought to be the origin of intracellular helical motion. This highly conserved region also makes contacts with residues on helix 3, and here we use double mutant cycle analysis and unnatural amino acid mutagenesis to probe the functional role of several residues in this region of the closely related D2 dopamine receptor. Of the eight mutant pairs examined, all show significant functional coupling (Ω > 2), with the largest coupling coefficients observed between residues on different helices, C3.36/W6.48, T3.37/S5.46, and F5.47/F6.52. Additionally, three aromatic residues examined, F5.47, Y5.48, and F5.51, show consistent trends upon progressive fluorination of the aromatic side chain. These trends are indicative of a functionally important electrostatic interaction with the face of the aromatic residue examined, which is likely attributed to aromatic-aromatic interactions between residues in this microdomain. We also propose that the previously determined fluorination trend at W6.48 is likely due to a sulfur-π interaction with the side chain of C3.36. We conclude that these residues form a tightly packed structural microdomain that connects helices 3, 5, and 6, thus forming a barrier that prevents dopamine from binding further toward the intracellular surface. Upon activation, these residues likely do not change their relative conformation, but rather act to translate agonist binding at the extracellular surface into the large intracellular movements that characterize receptor activation.  相似文献   

13.
铜转运蛋白(CTR1)不仅参与铜的细胞摄取,而且在其它重金属离子的摄取过程中也发挥重要作用. 本文采用紫外-可见(UV-Vis)光谱,核磁共振(NMR)和质谱(MS)的方法,研究了人源CTR1 (hCTR1)的C端金属结合域(C8)与Ag+和Hg2+的相互作用. 研究表明,Ag+和Hg2+都能与C8结合,但二者与C8的结合机制明显不同. 每个C8分子可以结合两个Ag+离子,但一个Hg2+却可以与两个C8形成桥联. 此外,Ag+离子与C8的配位是一个中等速度的交换过程,而Hg2+离子则为快速交换过程. C8的半胱氨酸残基是两种离子的重要结合位点,同时组氨酸残基也参与两种金属离子的配位,其中Ag+优先结合组氨酸,而Hg2+则对半胱氨酸的结合具有显著的优势. 虽然HCH基序对C8 与金属配位至关重要,一些远端的其它氨基酸也可以参与C8 与银离子的配位,这可能与CTR1 在摄取Ag+过程中的金属转移机制相关. 这些结果为理解hCTR1 蛋白摄取重金属离子的作用机制提供了必要的信息.  相似文献   

14.
Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide-bridged conotoxin, mu-SxIIIA (from the venom of Conus striolatus), whose discovery is also reported here for the first time. Mu-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with (15)N/(13)C, while the remaining three cysteine residues were incorporated using a mixture of 70%/30% unlabeled/labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple-resonance ((1)H, (13)C, (15)N) NMR experiments and 2D [(13)C, (1)H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of mu-conotoxins. Mu-SxIIIA was found to be a potent blocker of the sodium channel subtype Na(V)1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides.  相似文献   

15.
16.
Due to the COVID-19 pandemic, researchers have attempted to identify complex structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S-protein) with angiotensin-converting enzyme 2 (ACE2) or a blocking antibody. However, the molecular recognition mechanism—critical information for drug and antibody design—has not been fully clarified at the amino acid residue level. Elucidating such a microscopic mechanism in detail requires a more accurate molecular interpretation that includes quantum mechanics to quantitatively evaluate hydrogen bonds, XH/π interactions (X = N, O, and C), and salt bridges. In this study, we applied the fragment molecular orbital (FMO) method to characterize the SARS-CoV-2 S-protein binding interactions with not only ACE2 but also the B38 Fab antibody involved in ACE2-inhibitory binding. By analyzing FMO-based interaction energies along a wide range of binding interfaces carefully, we identified amino acid residues critical for molecular recognition between S-protein and ACE2 or B38 Fab antibody. Importantly, hydrophobic residues that are involved in weak interactions such as CH–O hydrogen bond and XH/π interactions, as well as polar residues that construct conspicuous hydrogen bonds, play important roles in molecular recognition and binding ability. Moreover, through these FMO-based analyses, we also clarified novel hot spots and epitopes that had been overlooked in previous studies by structural and molecular mechanical approaches. Altogether, these hot spots/epitopes identified between S-protein and ACE2/B38 Fab antibody may provide useful information for future antibody design, evaluation of the binding property of the SARS-CoV-2 variants including its N501Y, and small or medium drug design against the SARS-CoV-2.

Quantum chemical calculations investigated molecular recognition of SARS-CoV-2 spike glycoproteins including its N501Y variant for ACE2 and antibody. Hot spot and epitope analyses revealed key residues to design drugs and antibodies against COVID-19.  相似文献   

17.
G-蛋白偶联受体GPR120分子模建研究   总被引:1,自引:0,他引:1  
陆绍永  蒋勇军  俞庆森  邹建卫 《化学学报》2009,67(14):1553-1558
新的长链脂肪酸受体G-蛋白偶联受体120 (G-protein-coupled receptor120, GPR120)是2型糖尿病的潜在治疗靶标. 由于其晶体结构迄今尚未获得, 成为基于结构的新药设计的瓶颈. 首先, 以人体β2肾上腺能素受体(human β2 adrenergic receptor, β2AR)晶体结构为模板, 通过同源模建方法构建GPR120三维结构, 对整个体系进行包膜的分子动力学模拟. 然后采用分子对接技术模建了GPR120的小分子激动剂GW9508与GPR120的相互作用模型, 发现了受体分子识别的关键性残基, 为开展定点突变实验提供了指导意义. 所建模型为研究受体与配体作用提供了合理的初始结构, 此方法也适用于其他G蛋白偶联受体的分子模建.  相似文献   

18.
19.
We have examined the performance of semiempirical quantum mechanical methods in solving the problem of accurately predicting protein-ligand binding energies and geometries. Firstly, AM1 and PM3 geometries and binding enthalpies between small molecules that simulate typical ligand-protein interactions were compared with high level quantum mechanical techniques that include electronic correlation (e.g., MP2 or B3LYP). Species studied include alkanes, aromatic systems, molecules including groups with hypervalent sulfur or with donor or acceptor hydrogen bonding capability, as well as ammonium or carboxylate ions. B3LYP/6-311+G(2d,p) binding energies correlated very well with the BSSE corrected MP2/6-31G(d) values. AM1 binding enthalpies also showed good correlation with MP2 values, and their systematic deviation is acceptable when enthalpies are used for the comparison of interaction energies between ligands and a target. PM3 otherwise gave erratic energy differences in comparison to the B3LYP or MP2 approaches. As one would expect, the geometries of the binding complexes showed the known limitations of the semiempirical and DFT methods. AM1 calculations were subsequently applied to a test set consisting of "real" protein active site-ligand complexes. Preliminary results indicate that AM1 could be a valuable tool for the design of new drugs using proteins as templates. This approach also has a reasonable computational cost. The ligand-protein X-ray structures were reasonably reproduced by AM1 calculations and the corresponding AM1 binding enthalpies are in agreement with the results from the "small molecules" test set.  相似文献   

20.
GABA(C) (rho) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which includes nicotinic acetylcholine (nACh), 5-HT(3), and glycine receptors. As in other members of this family, the agonist binding site of GABA(C) receptors is rich in aromatic amino acids, but while other receptors bind agonist through a cation-pi interaction to a tryptophan, the GABA(C) binding site has tyrosine at the aligning positions. Incorporating a series of tyrosine derivatives at position 198 using unnatural amino acid mutagenesis reveals a clear correlation between the cation-pi binding ability of the side chain and EC(50) for receptor activation, thus demonstrating a cation-pi interaction between a tyrosine side chain and a neurotransmitter. Comparisons among four homologous receptors show variations in cation-pi binding energies that reflect the nature of the cationic center of the agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号