首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-dimensional Bi2WO6 nanofibers have been successfully synthesized by simple electrospinning processes. XRD, SEM and UV–visible diffuse reflectance spectra were used to characterize the nanofibers. The results indicated that the Bi2WO6 was composed of one-dimensional nanofibers, whose diameter was about 50 nm. Besides, the Bi2WO6 nanofibers exhibited excellent visible photocatalytic property in the photodegradation of methylene blue.  相似文献   

2.
The photocatalytic ability of ZnO is improved through the addition of flower-like Bi2WO6 to prepare a Bi2WO6/ZnO composite with visible light activity. The composite is characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. After modification, the band gap energy of Bi2WO6/ZnO is reduced from 3.2 eV for ZnO to 2.6 eV. Under visible light irradiation, the Bi2WO6/ZnO composite shows an excellent photocatalytic activity for degrading methylene blue (MB) and tetracycline. The photo-degradation efficiencies of (0.3:1) Bi2WO6/ZnO for MB and tetracycline are approximately 246 and 4500 times higher than those of bare ZnO, respectively, and correspondingly, the photo-degradation rates for the two pollutants are approximately 120 and 200 times higher than those with bare ZnO, respectively. Moreover, the photocatalyst of (0.3:1) Bi2WO6/ZnO exhibits a higher transient photocurrent density of approximately 4.5 μA compared with those of bare Bi2WO6 and ZnO nanoparticles. The successful recombination of Bi2WO6 and ZnO enhances the photocatalytic activity and reduces the band gap energy of ZnO, which can be attributed to the effective separation of electron–hole pairs. Active species trapping experiments display that [O2]? is the major species involved during photocatalysis rather than ?OH and h+. This study provides insight into designing a meaningful visible-light-driven photocatalyst for environmental remediation.  相似文献   

3.
Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron–hole separation, and lead to the increasing photocatalytic activity.  相似文献   

4.
以TiO2纳米管为模板,采用多组分自组装结合水热法制备Bi2WO6/TiO2纳米管异质结构复合材料。通过多种技术如X射线衍射(XRD),X射线光电子能谱(XPS),N2吸附-脱附,扫描电镜(SEM),高分辨透射电镜(HRTEM)和紫外可见漫反射吸收光谱(UV-Vis DRS)考察所制备样品的组成、结构、形貌、光吸收和电子性质。Bi2WO6纳米片或纳米粒子分布在TiO2纳米管上,形成异质结构。随后,通过在紫外、可见和微波辅助光催化模式下降解染料罗丹明B(RhB)来评价复合催化剂的光催化活性。与TiO2纳米管和Bi2WO6相比,Bi2WO6/TiO2-35纳米管在多模式下表现出更优异的光催化活性。与紫外和可见降解模式相比,Bi2WO6/TiO2-35纳米管在微波辅助光催化模式下对RhB的降解效率最高。这种增强的光催化活性源于适量Bi2WO6的引入、纳米管独特的形貌特征和降解模式所引起的增强的量子效率。降解过程中的活性物种被证明是h+,·OH和·O2-自由基。而且,在微波辅助光催化模式下,可产生更多的·OH和·O2-自由基。  相似文献   

5.
以静电纺丝技术制备的TiO2纳米纤维为基质,通过溶剂热法制备了异质结型稀土Ce掺杂Bi2MoO6/TiO2复合纳米纤维。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)以及荧光光谱(PL)等分析测试手段对样品的物相、形貌和光学性能等进行表征。以罗丹明B为模拟有机污染物,研究了样品的可见光催化性能。结果表明:在稀土掺杂样品中,Ce离子进入Bi2MoO6晶格,部分取代Bi3+,导致晶胞膨胀,晶格畸变,形成缺陷;与TiO2复合形成异质结,有利于光生电荷的产生、转移和有效分离,从而提高TiO2纳米纤维的光催化活性。可见光照射180 min,罗丹明B的降解率达到95.1%。经5次循环光催化降解活性基本不变,样品具有良好的光催化稳定性。  相似文献   

6.
以静电纺丝技术制备的TiO_2纳米纤维为基质,通过溶剂热法制备了异质结型稀土Ce掺杂Bi_2MoO_6/TiO_2复合纳米纤维。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)以及荧光光谱(PL)等分析测试手段对样品的物相、形貌和光学性能等进行表征。以罗丹明B为模拟有机污染物,研究了样品的可见光催化性能。结果表明:在稀土掺杂样品中,Ce离子进入Bi_2MoO_6晶格,部分取代Bi3+,导致晶胞膨胀,晶格畸变,形成缺陷;与TiO_2复合形成异质结,有利于光生电荷的产生、转移和有效分离,从而提高TiO_2纳米纤维的光催化活性。可见光照射180 min,罗丹明B的降解率达到95.1%。经5次循环光催化降解活性基本不变,样品具有良好的光催化稳定性。  相似文献   

7.
张进  崔皓  翟建平 《无机化学学报》2014,30(12):2857-2862
以工业固体废弃物粉煤灰漂珠(fly ash cenospheres,FACs)为载体,采用水热法制备了新颖的漂珠负载Bi2WO6复合材料(Bi2WO6/FACs),通过X射线衍射(XRD),扫描电子显微镜(SEM),X-射线光电子能谱(XPS),和紫外-可见漫反射光谱(DRS)技术对其进行了表征。XRD数据显示了正交相Bi2WO6的特征衍射峰。DRS结果证实了引入FACs后Bi2WO6对可见光的吸收增强。在可见光的照射下,以亚甲基蓝溶液的光催化降解评价了Bi2WO6/FACs复合材料的光催化性能。结果表明:Bi2WO6/FACs的光催化性能优于纯Bi2WO6的,其一级反应速率常数(k)为后者的2.4倍。尤其是由于漂珠质轻中空的特性,Bi2WO6/FACS复合光催化剂可长时间漂浮于水面,既能充分吸收光能,又有利于催化剂的回收和重复利用。  相似文献   

8.
以工业固体废弃物粉煤灰漂珠(fly ash cenospheres, FACs)为载体, 采用水热法制备了新颖的漂珠负载Bi2WO6复合材料(Bi2WO6/FACs), 通过X射线衍射(XRD), 扫描电子显微镜(SEM), X-射线光电子能谱(XPS), 和紫外-可见漫反射光谱(DRS)技术对其进行了表征。XRD数据显示了正交相Bi2WO6的特征衍射峰。DRS结果证实了引入FACs后Bi2WO6对可见光的吸收增强。在可见光的照射下, 以亚甲基蓝溶液的光催化降解评价了Bi2WO6/FACs复合材料的光催化性能。结果表明:Bi2WO6/FACs的光催化性能优于纯Bi2WO6的, 其一级反应速率常数(k)为后者的2.4倍。尤其是由于漂珠质轻中空的特性, Bi2WO6/FACS复合光催化剂可长时间漂浮于水面, 既能充分吸收光能, 又有利于催化剂的回收和重复利用。  相似文献   

9.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

10.
In this work, we report a novel AgBi(WO4)2–Bi2WO6 heterostructure, which was designed and synthesized by using a simple hydrothermal method. Methyl orange was used as a representative dye indicator to evaluate the visible‐light catalytic activity and the catalytic mechanism was investigated. The as‐synthesized AgBi(WO4)2–Bi2WO6 composite displayed a 43 times higher photocatalytic activity than Bi2WO6. Owing to the matched band gap and distinctive heterostructure, AgBi(WO4)2–Bi2WO6 reveals a high visible‐light response and high‐efficiency utilization of both photogenerated electrons and holes. AgBi(WO4)2 reveals a similar energy level to and good lattice match with Bi2WO6, which are favorable qualities for band bending and fluent electron transfer. Furthermore, the photoexcited electrons can produce oxygen to generate .O2? radicals, which is vital for the overall utilization of both holes and electrons. This is the first example of AgBi(WO4)2 being used as photocatalytic material.  相似文献   

11.
A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure.  相似文献   

12.
Uniform Bi2WO6 pancakes were prepared via a solvothermal route in a solvent mixture of glycerol (Gly) and water (V/V = 1). A variety of techniques including scanning electron microscopy, transmission electron micrographs, X-ray powder diffraction, Brunauer–Emmett–Teller, FT-IR spectra, and UV–Vis diffuse reflectance spectra, were employed to characterize the structure and properties of the as-obtained Bi2WO6. It was found that Bi2WO6 pancakes showed prominent photocatalytic performance for the degradation of rhodamine B (RhB) under visible light (λ ≥ 420 nm) irradiation, which can be attributed to its good crystallization, large surface area, unique morphology and structural features.  相似文献   

13.
In this study, a ternary TiO2/g-C3N4/Bi2WO6 nanocomposite was prepared via a facial approach. The final structure was applied as a new photocatalyst for the removal of brilliant green (BG) dye, as a model of organic pollutants, from the aqueous solution. The results of FESEM, EDS with mapping, XRD, FTIR, UV–vis DRS, PL, and EIS analyses further demonstrate the successful establishment of heterojunction between TiO2, g-C3N4, and Bi2WO6. Integration of g-C3N4 and Bi2WO6 with TiO2 was remarkably decreased the band gap energy of TiO2 to 2.68 eV (from 3.15 eV). The effects of various experimental factors such as TiO2/g-C3N4/Bi2WO6 dosage, initial BG concentration, visible irradiation time, and pH on the photocatalyst behavior of TiO2/g-C3N4/Bi2WO6 were investigated by 2 k-1 factorial design. The results of the analysis of variance demonstrate these experimental factors are effective on the BG degradation efficiency. The response surface methodology was applied to achieve the optimization procedure of BG degradation. According to these results, the complete BG removal efficiency was obtained for the optimal conditions of 15.76 mg of TiO2/g-C3N4/Bi2WO6 nanocomposite, an initial BG concentration of 10 ppm, pH of 9, and time duration of 70 min. The improved photocatalytic performance of ternary TiO2/g-C3N4/Bi2WO6 nanocomposite was related to the formation of heterojunction between TiO2, g-C3N4, and Bi2WO6, significant light adsorption ability, and low recombination of photogenerated carriers.  相似文献   

14.
Nanocrystalline N-doped TiO2 powders were successfully prepared by hydrothermal reaction for 2 h at low temperature (120 °C) and at an applied pressure of 3 MPa. The grain size of the powders (calculated by use of Scherrer’s method) ranged from 8.2 to 10.2 nm. The BET specific surface area ranged from 151.0 to 220.0 m2/g. A significant shift of the light absorption edge toward the visible light zone was observed in the UV–visible spectra. XPS results showed that nitrogen atoms were incorporated into the TiO2 lattice. The photocatalytic activity of the synthesized N-doped TiO2 powders was evaluated by measurement of photodegradation of methylene blue (MB) in aqueous solution under visible light irradiation. The amount of MB degraded increased with increasing illumination intensity.  相似文献   

15.
Pure orthorhombic phase Bi2WO6 powders were synthesized by a microwave hydrothermal method in the absence of surfactants and templates, using Bi(NO3)3·5H2O and Na2WO4·2H2O as raw materials. Photocatalytic properties of the samples prepared at different reaction temperatures were also studied with Rhodamine B (RhB) solution as the target catabolite under visible light. The results indicate that flower-like Bi2WO6 powders can be obtained by controlling the microwave reaction temperatures in the absence of any additives. The growth of flower-like Bi2WO6 powders is a multistage layer assembly process, in which the flower-like Bi2WO6 self-assembling with the uniform size about 2 μm is synthesized at 180 °C. At the same time, the photocatalytic reaction rate constant (k) gets up to 0.04167/min and the degradation rate of RhB solution is more than 96 % after being irradiated under visible light for 70 min.  相似文献   

16.

Bi2WO6/UiO-66-NH2 photocatalysts were fabricated through solvothermal method using acetic acid as template. The photocatalytic performance of as-fabricated composites was highly improved under simulated visible light due to the addition of UiO-66-NH2. The structural and chemical properties of the composites were characterized through FTIR, XRD, XPS, SEM, BET, UV–vis DRS and PL. After 90 min of visible light irradiation, the RhB at an initial concentration of 10 mg·L?1 in the solution was degraded by 99.4% due to the addition of 10 mg of the composite. There was no significant decrease in the photocatalytic activity even after four rounds of cycles. The free radical capture experiments indicate that the photogenerated holes (h+) were the main active sites. The possible photocatalytic degradation mechanism was proposed as the specific surface area of the composite was enlarged due to the uniform distribution of UiO-66-NH2 on the surface of Bi2WO6. The electron–hole pairs recombination rate was decreased due to the photogenerated electrons (e?) on the CB of Bi2WO6 which can be rapidly transferred to the CB of UiO-66-NH2 and the photogenerated holes of UiO-66-NH2 transferred to the VB of Bi2WO6. Meanwhile, the RhB was directly oxidized to H2O and CO2 by h+ to achieve the purification effect.

  相似文献   

17.
Mesoporous WO3–TiO2 composite films were prepared by a sol gel based two stage dip coating method and subsequent annealing at 450, 500 and 600 °C. An organically modified silicate based templating strategy was adopted in order to obtain a mesoporous structure. The composite films were prepared on ITO coated glass substrates. The porosity, morphology, and microstructures of the resultant products were characterized by scanning electron microscopy, N2 adsorption–desorption measurements, μ-Raman spectroscopy and X-ray diffraction. Calcination of the films at 450, and 500 °C resulted in mixed hexagonal (h) plus monoclinic phases, and pure monoclinic (m) phase of WO3, respectively. The degree of crystallization of TiO2 present in these composite films was not evident. The composite films annealed at 600 °C, however, consist of orthorhombic (o) WO3 and anatase TiO2. It was found that the o-WO3 phase was stabilized by nanocrystalline anatase TiO2. The thus obtained mesoporous WO3–TiO2 composite films were dye sensitized and applied for the construction of photochromic devices. The device constructed using dye sensitized WO3–TiO2 composite layer heat treated at 600 °C showed an optical modulation of 51 % in the NIR region, whereas the devices based on the composite layers heat treated at 450, and 500 °C showed only a moderate optical modulation of 24.9, and 38 %, respectively. This remarkable difference in the transmittance response is attributed to nanocrystalline anatase TiO2 embedded in the orthorhombic WO3 matrix of the WO3–TiO2 composite layer annealed at 600 °C.  相似文献   

18.
Mesoporous WO3–TiO2 composite films were prepared by a sol gel based two stage dip coating method and subsequent annealing at 450, 500 and 600 °C. An organically modified silicate based templating strategy was adopted in order to obtain a mesoporous structure. The composite films were prepared on ITO coated glass substrates. The porosity, morphology, and microstructures of the resultant products were characterized by scanning electron microscopy, N2 adsorption–desorption measurements, μ-Raman spectroscopy and X-ray diffraction. Calcination of the films at 450, and 500 °C resulted in mixed hexagonal (h) plus monoclinic phases, and pure monoclinic (m) phase of WO3, respectively. The degree of crystallization of TiO2 present in these composite films was not evident. The composite films annealed at 600 °C, however, consist of orthorhombic (o) WO3 and anatase TiO2. It was found that the o-WO3 phase was stabilized by nanocrystalline anatase TiO2. The thus obtained mesoporous WO3–TiO2 composite films were dye sensitized and applied for the construction of photochromic devices. The device constructed using dye sensitized WO3–TiO2 composite layer heat treated at 600 °C showed an optical modulation of 51 % in the NIR region, whereas the devices based on the composite layers heat treated at 450, and 500 °C showed only a moderate optical modulation of 24.9, and 38 %, respectively. This remarkable difference in the transmittance response is attributed to nanocrystalline anatase TiO2 embedded in the orthorhombic WO3 matrix of the WO3–TiO2 composite layer annealed at 600 °C.  相似文献   

19.
N/Bi2WO6 flower-like crystallites self-assembled from nanoflakes were synthesized by a microwave-hydrothermal method using Na2WO4·2H2O, Bi(NO3)3·5H2O and CO(NH2)2 as raw materials. The effects of N-doping contents on the crystallites structure, photoluminescence and photocatalytic properties were also studied. The results indicate that N-doping turns the flower-like crystallites into withered flower-like structure composed of flocculent cotton clusters, which results in the decrease of the specific surface area from 21.72 m2g?1 to 12.07 m2g?1. When N-doping contents are 0.25 and 0.50, the photoluminescence intensity of the crystallites is decreased inhibiting the recombination of photogenerated electron-hole of Bi2WO6 crystallites, which has a decisive effect on the photocatalytic properties of Bi2WO6 crystallites. Under visible light irradiation for 60 min, the degradation rate of rhodamine B can nearly reach 100 % while under UV-irradiation for 20 min with N-doping contents 0.25 and 0.50, the degradation rate of the crystallites to rhodamine B can be up to 80 %.  相似文献   

20.
Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag from Ag+ precursors. In situ energy dispersive X-ray diffraction (EDXRD) monitoring showed that the hydrothermal formation kinetics of Bi2WO6 in the presence of EG was significantly slowed down due to its very high viscosity. The photocatalytic activities of Ag/Bi2WO6 composites were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The photocatalytic activity of Bi2WO6 is strongly influenced by the Ag loading. The enhanced catalytic activity of the composites is based on the cooperative effects of plasmon absorption band and separation of photogenerated electron-hole pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号