首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, rapid, and highly selective method for the separation of molybdenum from a large number of elements of analytical importance has been developed. The method is based on the extraction of a Mo(V)-ferron (7-iodo-8-hydroxyquinoline-5-sulphonic acid) complex into trioctylamine-chloroform in a sulphuric acid medium using ascorbic acid as a reductant. Many elements such as Re(VII), W(VI), U(VI), Th(IV), Cr(III), Cr(VI), V(V), Ce(IV), Ru(III), Co(II), Ni(II), Mn(II), Fe(II), Fe(III), Cd(II), Mg(II), Cu(II), Al(III), Zn(II), Pb(II), Ag(I), and As(V) are not extracted under the conditions proposed and, thus, molybdenum can be easily separated without any interference. Sulphate, chloride, nitrate, phosphate, and oxalate anions have no effect on the extraction of molybdenum. However, zirconium and palladium interfere seriously. The ratio of Mo: ferron: TOA in the extracted species is found to be 1: 1: 3 using Job’s method of continuous variations. This value has been further confirmed by the mole-ratio method. The text was submitted by the authors in English.  相似文献   

2.
The distribution coefficients were determined for twelve elements, namely As(III), Ce(III), Cr(III), Co(II), Cu(II), In(III), Lu(III), Mn(II), Hg(II), Mo(VI), Sc(III) and Zn(II), on a strong base anion exchanger in pure oxalic acid solutions. The KD curves are given. A scheme was developed for the chromatographic separation of five elements, namely As(III), Mn(II), Co(II), Zn(II) and Cu(II). Ce(III) can be separated from Lu(III).  相似文献   

3.
Strelow FE  Wienert CH  van der Walt TN 《Talanta》1974,21(11):1183-1191
Indium can be separated from Zn, Pb(II), Ga, Ca, Be, Mg, Ti(IV), Mn(II), Fe(III), Al, U(VI), Na, Ni(II) and Co(II) by selective elution with 0.50M hydrochloric acid in 30% aqueous acetone from a column of AG50W-X8 cation-exchange resin, all the other elements being retained by the column. Lithium is included in the elements retained by the column when 0.35M hydrochloric acid in 45% aqueous acetone is used for eluting indium, but the elution of indium is slightly retarded. Ba, Sr, Zr, Hf, Th, Sc, Y, La and the lanthanides, Rb and Cs should also be retained according to their distribution coefficients. Cd, Bi(III), Au(III), Pt(IV), Pd(II), Rh(III), Mo(VI) and W(VI) can be eluted with 0.20M hydrobromic acid in 50% aqueous acetone before the elution of indium, and Ir(III), Ir(IV), As(III), As(V), Se(IV), Tl(III), Hg(II), Ge(IV), Sb(III) and Sb(V), though not investigated in detail, should accompany these elements. Relevant distribution coefficients and elution curves and results for analyses of synthetic mixtures of indium with other elements are presented.  相似文献   

4.
Victor AH  Strelow FW 《Talanta》1981,28(4):207-214
Zinc and lead can be separated from Cd, Bi(III), In and V(V) by eluting these elements with 0.2M hydrochloric acid in 60% acetone from a column of AG50W-X8 cation-exchange resin, zinc and lead being retained. Mercury(II), Tl(III), As(III), Au(III), Sn(IV), Mo(VI), W(VI) and the platinum metals have not been investigated quantitatively, but from their distribution coefficients, should also be eluted. Vanadium(V), Mo(VI) and W(VI) require the presence of hydrogen peroxide. Zinc and lead can be eluted with 0.5M hydrochloric acid in 60% acetone or 0.5M hydrobromic acid in 65% acetone and determined by AAS; the alkali and alkaline-earth metal ions, Mn(II), Co, Ni, Cu(II), Fe(III), Al, Ga, Cr(III), Ti(IV), Zr, Hf, Th, Sc, Y, La and the lanthanides are retained on the column, except for a small fraction of copper eluted with zinc and lead. Separations are sharp and quantitative. The method has successfully been applied to determination of zinc and lead in three silicate rocks and a sediment.  相似文献   

5.
The current status and likely future directions of complexes of V(V/IV), Cr(III), Mo(VI), W(VI), Zn(II), Cu(II), and Mn(III) as potential oral drugs against type 2 diabetes are reviewed. We propose a unified model of extra- and intracellular mechanisms of anti-diabetic efficacies of V(V/IV), Mo(VI), W(VI), and Cr(III), centred on high-oxidation-state oxido/peroxido species that inhibit protein tyrosine phosphatases (PTPs) involved in insulin signalling. The postulated oxidative mechanism of anti-diabetic activity of Cr(III) via carcinogenic Cr(VI/V) (which adds to safety concerns) is consistent with recent clinical trials on Cr(III) picolinate, where activity was apparent only in patients with poorly controlled diabetes (high oxidative stress), and the correlation between the anti-diabetic activities and ease of oxidation of Cr(III) supplements and their metabolites in vivo. Zn(II) and Cu(II) anti-diabetics act via different mechanisms and are unlikely to be used as specific anti-diabetics due to their diverse and unpredictable biological activities. Hence, future research directions are likely to centre on enhancing the bioavailability and selectivity of V(V/IV), Mo(VI), or W(VI) drugs. The strategy of potentiating circulating insulin with metal ions has distinct therapeutic advantages over interventions that stimulate the release of more insulin, or use insulin mimetics, because of many adverse side-effects of increased levels of insulin, including increased risks of cancer and cardiovascular diseases.  相似文献   

6.
Covalent bonding of polyhexamethyleneguanidine amides of maleic and o-phthalic acids to the aminated silica surface was performed. The complexing properties of the obtained composite adsorbents with respect to Zn(II), Cu(II), Fe(III), Co(II), Pb(II), Ni(II), Mn(II), Mo(VI), and Cr(VI) ions were studied. The Mo(VI) and Cr(VI) reduction was detected on the modified silica surface bearing polyhexamethyleneguanidine amide with o-phthalic acid. The formation of different-ligand complexes with transition metal cations adsorbed on the synthesized composite surface was studied.  相似文献   

7.
Donaldson EM  Mark E 《Talanta》1982,29(8):663-669
The chloroform extraction of 30 elements (Fe, Co, Ni, Zn, Cd, Ge, Sn, V, As, Sb, Bi, Cu, Ag, Au, Mn, Re, Ga, In, Tl, Se, Te, Cr, Mo, U, Pt, Pd, Rh, Ir, Ru and Ce) from 0.1-8M sulphuric acid in the presence of potassium ethyl xanthate has been studied. Pd(II), Bi, As(III), Sb(III), Se(IV) and Te(IV) are completely extracted and Au(III) is largely extracted over the range of acid concentration investigated. Fe(II), Tl(I), Rh(III) and Cr(VI) are only slightly extracted and Se(VI), Te(VI), Ru(III), Cr(III), Mn(II), Zn, Ce(IV), Ir(IV) and Ge(IV) are not extracted at all. Depending on the acid concentration, the remaining elements are all partly extracted. Results are compared with those obtained in an earlier study of the extraction of xanthate complexes from hydrochloric acid media. The processes involved in the formation of some xanthate complexes and potential analytical separations are discussed.  相似文献   

8.
Extraction of Co(II) by diphenyl-2-pyridylmethane (DPPM) in benzene form mineral acid solutions containing potassium thiocyanate has been studied at room temperature (23±2°C). Its extraction from mineral acids alone is rather poor. Optimal aqueous phase composition for the quantitative extraction of Co(II) by 0.1M DPPM is 0.1M acid+0.2M KSCN. Stoichiometric studies indicate that an ionic type complex, (DPPM·H)2·Co(SCN)4, is responsible for extraction. The metal can be back-extracted from the organic phase by aqueous acetate, citrate or oxalate solutions. Separation factors from other metals determined under optimal conditions reveal that Co(II) can be quantitatively separated from CsI), Sr(II), Cr(III), Ln(III), Zr(IV), Hf(IV), Cr(VI) and Tc(VII), Mo(VI), Zn(II), Au(III), Hg(II) and U(VI) are, however, coextracted and hence should be previously removed by other techniques or reagents.  相似文献   

9.
Synthesis and analytical properties of 3,4-dihydroxy-benzaldehyde guanylhydrazone are described. The reagent was tested with 43 cations but only Co(II), Fe(II), Fe(III), Mo(VI), W(VI) and V(V) gave colored complexes. Spectral characteristics of the reagent are presented. Procedure for a selective a determination of Co(II), a sensitive determination of Fe(III) and determination of Mo(VI), W(VI) and V(V) in presence of large amounts of Fe(III) are reported. The method was applied for the determination (a) of Co(II) in presence of other cations at excess (b) of Fe(III) in a city drinking water sample without preconcentration and (c) of Mo(VI) in a standard steel sample.  相似文献   

10.
Nanewar RR  Tandon U 《Talanta》1978,25(6):352
A spectrophotometric method for the determination of vanadium in biological materials with N-benzylbenzohydroxamic acid is proposed. The method is highly selective for vanadium and is free from rigid control of reaction conditions. No separation of iron prior to the determination of vanadium is necessary. Cu(II), Co(II), Ni, Mn(II), Cr(III), Ce(IV), Zr, Mo(VI), Ca, Sr, Ba, UO(2)(II) and many others metal ions do not interfere. Fairly large quantities of Ti(IV) and W(VI) are tolerated.  相似文献   

11.
In this study, fatty amides (FAs) synthesized from palm olein were used to extract and separate Mo(VI) from acidic media. Effects of various parameters upon the separation of Mo(VI) from Co(II), Ni(II), Al(III) and Mn(II), including extractant concentration, metal ion concentration, contact time, diluent, and acidity, were investigated. It was found that Mo(VI) was successfully separated from the above commonly associated metal ions by stripping from the loaded organic phase. Different acidic and alkaline solutions were used. Ammonium hydroxide solution was an optimal. Extraction of Mo(VI) into the organic phase involved the formation of 1:3 complexes. This work presents the development of a low-cost and environmentally friendly extractant to recycle and recover molybdenum.  相似文献   

12.
A sensitive and selective method has been developed to determine Cr(III) and total Cr in natural water samples by ICP-AES with a Cr(III)-imprinted aminopropyl-functionalised silica gel adsorbent. The Cr(III)-imprinted and non-imprinted adsorbent were prepared by an easy one-step reaction with a surface imprinting technique. Their maximum static adsorption capacities for Cr(III) were 11.12 mg g?1 and 3.81 mg g?1, respectively. The relative selectivity factors (α r) for Cr(III)/Co(II), Cr(III)/Au(III), Cr(III)/Ni(II), Cr(III)/Cu(II), Cr(III)/Zn(II), and Cr(III)/Cr(VI), were 377, 21.4, 15.4, 27.7, 26.4, and 31.9, respectively. Under the optimal conditions, Cr(III) can be absorbed quantitatively, but Cr(VI) was not retained. Total chromium was obtained after reducing Cr(VI) to Cr(III) with hydroxyammonium chloride. The detection limit (3σ) for Cr(III) was 0.11 ng mL?1. The relative standard deviation was 1.2%. The proposed method has been validated by analysing two certified reference materials and successfully applied to the determination and speciation of chromium in natural water samples with satisfactory results.  相似文献   

13.
This study introduces a sensitive and simple method for selective adsorption of hexavalent chromium, Cr(VI), from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The method utilized activated carbon modified with tris(hydroxymethyl)aminomethane (AC-TRIS) as an adsorbent. Surface properties of the new chemically modified AC-TRIS phase were confirmed by Fourier transform infrared (FTIR) spectroscopy. Seven metal ions, including Co(II), Cu(II), Ni(II), Pb(II), Cr(III), Cr(VI), and Fe(III) were evaluated and determined at different pH values (1.0–8.0), except for Fe(III) at pH values (1.0–4.0). Based on the results of the effect of pH on adsorption of these metal ions on AC-TRIS, Cr(VI) was selected for the study of other parameters controlling its maximum uptake on AC-TRIS under batch conditions and at the optimum pH value 1.0. The maximum static adsorption capacity of Cr(VI) onto the AC-TRIS was found to be 43.30 mg g?1 at this pH and after 1 hour contact time. The adsorption data of Cr(VI) were modeled using both Langmuir and Freundlich classical adsorption isotherms. Results demonstrated that the adsorption of Cr(VI) onto AC-TRIS followed a pseudo second-order kinetic model. In addition, the efficiency of this methodology was confirmed by applying it to real environmental water samples.  相似文献   

14.
《Analytical letters》2012,45(6):741-751
Abstract

The extraction chromatography of manganese(II) was developed using tributyl phosphate as extractant from thiocyanate media with silica gel as the stationary phase. Manganese was extracted from 1.5 M ammonium thiocyanate, stripped with mineral acids and determined spectrophotometrically at 450 nm. It was separated from alkali metals, Mo(VI), nickel, silver and lead by selective extraction, and from iron(III), zinc, cobalt by selective stripping. The method was extended for the analysis of manganese in samples of soil and minerals.  相似文献   

15.
A method is presented for the quantitative separation of the trivalent rare earths plus Sc(III) as a group from Al(III), Ga(III), In(III), Tl(III), Fc(III). Ti(IV), U(VI), Be(II). Mn(II), Co(II), Cu(II), Ni(II). Zn(II). and Cd(II). These elements can be eluted from a cation-exchange column with 1.75 N HCl, while the rare earth group elements are retained. Numerous other elements not investigated have low distribution coefficients in 1.75 N HCl and therefore should be separated by the same procedure; Th(IV) is retained by the column when the rare earths are elutcd with 3.0 N HCl. The only elements which partially accompany the rare earths plus Sc(III) are Zr(IV), Hf(IV), Sr(II), and Ba(II) ; these have to be separated by special procedures. The method is suitable for accurate reference analysis over a wide range of concentrations.  相似文献   

16.
Summary Rhenium(VII) can be separated on a column of Al2O3 from a 500-fold excess of Mo(VI) and W(VI) and a 250-fold excess of Cr(III), Mn(II), Ni(II), Co(II), and Fe(III) by elution with 0.1M Nad. For photometric determination, rhenium(VII) is reduced with Sn(II), extracted as the thiocyanate complex into isopropyl ether, and measured at 430 nm. The sensitivity is 0.04 g/ml, if 10-mm cells are used. The interferences were examined statistically and found to be negligible.
Zusammenfassung Rhenium(VII) läßt sich von einem 500fachen Überschuß an Mo(VI) und W(VI) sowie von einem 250fachen Überschuß an Cr(III), Mn(II), Ni(II), Co(II) und Fe(III) mit Hilfe einer Aluminiumoxidsäule trennen und daraus mit 0,1-m Kochsalz eluieren. Für die photometrische Bestimmung wird Rhenium(VII) mit Sn(II) reduziert, dann als Rhodanidkomplex mit Isopropyläther extrahiert und bei 430 nm gemessen. Bei Verwendung von 10-mm-Küvetten beträgt die Empfindlichkeit 0,04 g Re/ml. Störungen wurden statistisch geprüft und als unbeachtlich erkannt.
  相似文献   

17.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 microg/l for Cr(VI) and 5 microg/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

18.
Summary Separation of bismuth(III) from iron(III), molybdenum(VI), vanadium(V), chromium(VI), titanium(IV), antimony(III), lead(II), beryllium(II), uranium(VI), hafnium(IV), indium(III) and zirconium (IV) is achieved by solvent extraction with high molecular weight amines from sodium succinate solution adjusted to suitable pH. Bismuth(III) is stripped from the organic phase and determined spectrophotometrically. The method is shown to be applicable to bismuth alloys.
Extraktion und Trennung von Wismut(III) aus Stahl und wismuthältigen Legierungen
Zusammenfassung Wismut(III) läßt sich von Fe(III), Mo(VI), V(V), Cr(VI), Ti(IV), Sb(III), Pb(II), Be(II), U(VI), Hf(IV), In(III) und Zr(IV) durch Extraktion mit hochmolekularen Aminen aus Natriumsuccinat bei geeignetem pH trennen. Bi(III) wird dann von der organischen Phase getrennt und spektralphotometrisch bestimmt. Das Verfahren eignet sich für Wismutlegierungen.
  相似文献   

19.
Leong CL 《Talanta》1971,18(8):845-848
A ternary complex between germanium, Catechol Violet (CV) and cetyltrimethylanunoniuni bromide is proposed for the determination of germanium. The stoichiometric ratio Ge:CV is 1:2. Beer's law is obeyed from 0.1 to 1.0 ppm of Ge. The method is highly selective. Interference from Sn(IV), Fe(III), Bi(III), Cr(VI), Mo(VI), V(V) and Sb(III) in mg amounts is eliminated by extracting the germanium into carbon tetrachloride from 9M HC1 and then stripping into water before the photometric determination.  相似文献   

20.
The biosorption data of Cd(II), Cr(III), and Cr(VI) by saltbush leaves biomass were fit on the Freundlich and Langmuir adsorption isotherms at 297 K. The Cd(II) and Cr(III) solutions were adjusted to pH 5.0 and the Cr(VI) solution was adjusted to pH 2.0. The correlation coefficient values indicated that the data fit better the Freundlich model. The maximal capacities (K(F)) were found to be 5.79 x 10(-2), 3.25 x 10(-2), and 1.14 x 10(-2) mol/g for Cr(III), Cd(II), and Cr(VI), respectively. Similar results were obtained using the Langmuir and the Dubinin-Radushkevick equations. Thermodynamic parameters calculated from the Khan and Singh equation and from the q(e) vs C(e) plot show that the equilibrium constants for the biosorption of the metals follow the same order of the maximal capacities. The negative Gibbs free energy values obtained for Cd(II) and Cr(III) indicated that these ions were biosorbed spontaneously. The mean free energy values calculated from the Dubinin-Radushkevick equation (10.78, 9.45, and 9.05 for Cr(III), Cr(VI), and Cd(II), respectively) suggest that the binding of Cd(II), Cr(III), and Cr(VI) by saltbush leaves biomass occurs through an ionic exchange mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号