首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radon (222Rn) and other radionuclides in groundwater can lead to health problems if present in higher concentrations. A study was carried out in Madurai district of Tamilnadu by collecting groundwater samples for four different seasons and aims to identify the regions with higher 222Rn concentration along with their spatial and seasonal variations. 222Rn has been compared with field parameters, log pCO2, major ions and uranium to detect the factors responsible for the higher concentration in groundwater. The weathering process induces the release of higher uranium ions from the granitic terrain from the rock matrix which enhances the 222Rn levels in groundwater.  相似文献   

2.
A study was conducted to understand the occurrence of the radionuclides in groundwater of crystalline hard rock region. Samples were collected to analyze major cations, anions, U, 222Rn and stable isotopes of oxygen, hydrogen. It was inferred that few samples have U and 222Rn concentrations higher than the permissible limit of drinking water standard. High degree of weathering of granitic rocks and long contact time of groundwater with the aquifer matrix could be the reason for enhanced U and 222Rn levels in groundwater. The association of U with SO4 also proves that there exists anthropogenic influence in groundwater composition.  相似文献   

3.
Since 2008, the authors have been conducting research into 222Rn and 226Ra activity concentrations in shallow circulation groundwaters in southern Poland. Measurements have been performed with a liquid-scintillation method and ultra low-level liquid-scintillation spectrometers α/β Quantulus 1220. The research carried out so far has demonstrated that in the Sudetes groundwaters with high activity concentrations of 222Rn and 226Ra are common. In other studied areas in southern Poland no shallow circulation groundwaters with high radon or radium concentrations have been found yet. The conducted research has demonstrated that the activity concentration of 222Rn dissolved in shallow circulation groundwaters in the Sudetes depends chiefly on the amount of radon, which after being released as gas from reservoir rocks is dissolved in waters flowing through these rocks. At the same time, the concentration of 222Rn dissolved in some shallow circulation groundwaters in the Carpathians is influenced significantly by the amount of radon produced from the decay of its parent ion 226Ra2+ dissolved in these waters.  相似文献   

4.
This paper presents the assessment of inhalation exposure potential of broken uranium ore piles in different stopes of Jaduguda uranium mines of India. 222Rn emanation coefficient of broken uranium ore was measured in laboratory by collecting air sample from airtight glass jar containing ore sample. An attempt was also made to correlate the emanation coefficient with 226Ra content of the ore. The 222Rn progeny doses estimated based on radon activity concentration of broken ore, occupancy period and equilibrium ratio in different stopes were well below the prescribed limit of International Commission on Radiological Protection. The maximum 222Rn progeny dose contribution from broken ore piles was worked out to be 0.22 mSv year?1. This suggests that the broken ore piles are not the significant contributor of inhalation exposure under the existing ventilation condition of Jaduguda uranium mine.  相似文献   

5.
Submarine groundwater discharge is the fresh groundwater discharge to sea that impacts the coastal regions. Radon (222Rn) isotope has been used to quantify SGD in coleroon river estuary, India. Continuous 222Rn analyses were attempted for 10 days in groundwater and pore water samples at three different locations. 222Rn in groundwater ranges between 35.0 and 222.0 Bq m?3 and in pore water between 14.0 and 150.0 Bq m?3 irrespective of locations. The radon mass balance estimated total SGD rate ranges between 2.37 and 7.47 m days?1. The SGD increases with distance from coast, influenced by tides and hydrological features.  相似文献   

6.
Permanent probes to sample soil gases were placed at the Latera geothermal field, located in the Volsini Mts., Latium, Italy. Due to high uranium concentrations in the area's alkali-potassic volcanics outcropping, quite high222Rn values, ranging from 9,260 up to 753,000 Bq/m3, were found. The highest radon activities match tectonic structures such as fractures and faults, and a deep high structure which constitutes the geothermal reservoir. These high radon values also conform to a major amount of4He and CO2. The latter gases are enriched in the gaseous phase of the geothermal fluids, and their migration is also controlled by structural features. This suggests that the enrichment of222Rn in the soil gases, can be linked to a direct contribution of226Ra, carried by deep-seated fluids from the reservoir itself.  相似文献   

7.
Geochemical radioanalytical studies of groundwater were performed in the valleys of Villa de Reyes and San Luis Potosi (Mexico). The experiments were designed to measure radon and uranium content and234U/238U activity ratio in groundwater samples taken from wells in these sites and at the Nuclear Center of Salazar, Mexico.222Rn content varied depending on the sample source, reaching a maximum value of 235 pCi/l; uranium concentration results were less than 1 g/1 and234U/238U activity ratios were close to equilibrium.  相似文献   

8.
222Rn is one of the operative tracers for submarine groundwater discharge (SGD), which plays a significant role in the land–ocean interaction of the estuarine and coastal regions. By the distribution pattern of 222Rn in atmosphere, groundwater and surface seawater, in a full tidal period (25 h) in March 2012, SGD was estimated along the coast of Xiangshan, Zhejiang, China. 222Rn activity in Xiangshan coast was in range of 2.4 × 104–1.7 × 105 Bq/m3 with an average of 9.6 × 104 Bq/m3 for groundwater; 0.2 × 102–2.8 × 102 Bq/m3 with an average of 1.1 × 102 Bq/m3 for surface seawater. 222Rn activities in groundwater were much greater than those in surface water, suggesting that the major source of radon came from coastal groundwater discharge. Rn fluxes of atmospheric emissions, sediment, and of 226Ra in situ decay can be negligible in this study, but the tidal effects play a crucial role in Rn fluxes. Using a radon inventory equilibrium model, we estimated that the average SGD was 13.2 cm/day and the average terrestrial SGD flux was 1.8 × 108 m3/day. Furthermore, SGD may have a vital impact on the composition and structure of nutrients in seawater, and contribute to eutrophication events occurring in spring season along the coast of the East China Sea.  相似文献   

9.

The activity concentrations of 226Ra, 228Ra and 222Rn were measured in 87 groundwater samples to estimate the activity concentrations of these radionuclides and health impact due to intake of these radionuclides in groundwater of Jordan. The mean activity concentrations of 226Ra, 228Ra and 222Rn in groundwater were found to be 0.293?±?0.005 Bq L?1, 0.508?±?0.009 Bq L?1 and 58.829?±?8.824 Bq L?1, respectively. They give a mean annual effective dose of 0.481 mSv with mean lifetime risk of 24.599?×?10?4, exceeding the admissible limit of 10?4. Most of the received annual effective dose (59.15% of the total) is attributed to 228Ra.

  相似文献   

10.
This paper presents the isotope hydrochemical results of groundwaters from southwest Punjab for assessing the uranium contamination and evaluating the factors leading to elevated uranium concentration. A total of 35 samples covering shallow and deep zones were collected for hydrochemistry and isotopes. Uranium concentration ranges between 2.3 and 357 µg L?1 and 66% of the samples are contaminated. Both shallow and deep zones show U contamination but high incidences are noticed in shallow zone. Hydrochemical correlations infer geological sources rather than anthropogenic sources responsible for U contamination. Isotopically there is no clear distinction between high and low U groundwater.  相似文献   

11.
Research was carried out to evaluate the possible correlation between the uranium content in host rocks and the Rn and daughters concentration in air for two Italian ZnS-PbS mines. As a great variability had been ascertained for222Rn and daughters concentration in the different areas, it appeared of some interest to verify whether this fact was due to a different uranium concentration in the host dolomitic rocks or simply to a ventilation problem. Some rock samples were collected in several places where also radon and daughters were drawn; uranium was determined by fluorimetry and by alpha spectrometry after a chemical separation with a Microthene-TOPO column.222Rn was measured by the scintillation cell method, while the decay products were determined by the Markov and Tsivoglou methods. No correlation could be found between uranium content and radon concentration, but a good linearity was detected between the uranium content and the concentration of Rn decay products (alpha potential energy).  相似文献   

12.
Data are presented on222Rn,226Ra, natural uranium concentrations and gross beta activity of spring and surface waters in the region of the uranium ore deposit at Žirovski vrh. The concentrations were found to be relatively low. There is some increase in the vicinity of the explorative Uranium Mine but is, at least up till now, only of a local character.  相似文献   

13.
To obtain an average dose from 222Rn to the people in Aomori Prefecture where the first Japan"s nuclear fuel cycling facilities are now under construction, we surveyed 222Rn concentrations in 109 dwellings in the Prefecture from 1992 to 1996. The outdoor 222Rn concentrations were also measured in gardens of 15 dwellings. The 222Rn concentrations were measured with passive 222Rn detectors which used a polycarbonate film for counting a-ray and could separate concentrations of 222Rn from 220Rn. Counting efficiencies of the detectors were calibrated with a standard 222Rn chamber in the Environmental Measurement Laboratory in USA and in the National Radiological Protection Board in UK. Geometric means of 222Rn concentration were 13 and 4.4 Bq.m-3 in the dwellings and outdoor, respectively. These values were consistent to nationwide survey results in Japan. The 222Rn concentrations in the dwellings depended on their age. The concentrations were higher in recent dwellings than in older ones. The radiation dose from 222Rn was estimated, taking into account the occupancy factor for inside and outside of dwellings. The annual dose was 0.32 mSv.y-1, and 99% of the dose came from the exposure to 222Rn inside the dwelling.  相似文献   

14.
Summary Radon-222 is a good natural tracer of groundwater discharge and other physical processes in the coastal ocean. Unfortunately, its usefulness is limited by the time consuming nature of collecting individual samples and traditional analysis schemes. We demonstrate here an automated multi-detector system that can be used in a continuous survey basis to assess radon activities in coastal ocean waters. The system analyses 222Rn from a constant stream of water delivered by a submersible pump to an air-water exchanger where radon in the water phase equilibrates with radon in a closed air loop. The air stream is fed to 3 commercial radon-in-air monitors connected in parallel to determine the activity of 222Rn. By running the detectors out of phase, we are able to obtain as many as 6 readings per hour with a precision of approximately ±5-15% for typical coastal seawater concentrations.  相似文献   

15.
Characterizing the quality and radioactivity of groundwater is vital as it represents valuable resource in arid regions. Here we present radioactivity level in groundwater collected from wells in a region along the border between Sultanate of Oman and United Arab Emirates (UAE). The aquifers are alluvium deposits (silt, sand and gravel) and the measured groundwater radioactivity (including 232Th, 238U, 235U, 226Ra, 222Rn, gross-α and gross-β) indicates values below the WHO permissible limits for drinking water. The results also show large difference in radioactivity fingerprints, in particular for 226Ra and 222Rn within the investigated aquifers. The data further indicate lower radioactivity in groundwater of the alluviums compared to the carbonate aquifers in the region. This feature makes the alluvium aquifers valuable reservoirs that should be carefully exploited as a source of groundwater. As this is the first investigation on the radioactivity of groundwater in alluvial aquifers in the region, it suggests that other alluvial deposits, particularly those inland and far from the marine water intrusion or seepage from carbonate rocks would have low radioactivity fingerprints.  相似文献   

16.
The present study presents an overview of the distribution of radon (222Rn) activity concentration in the groundwater samples and their annual effective dose exposure in the Varahi and Markandeya command areas. Radon measurement was made using Durridge RAD-7 radon-in-air monitor, using RAD H2O technique with closed loop aeration concept. The measured 222Rn activities in 16 groundwater samples of Varahi command area ranged between 0.2 ± 0.4 and 10.1 ± 1.7 Bq L−1 with an average value of 2.07 ± 0.84 Bq L−1, well within the EPA’s maximum contaminant level (MCL) of 11.1 Bq L−1. In contrast, the recorded 222Rn activities in 14 groundwater samples of Markandeya command area found to vary from 2.21 ± 1.66 to 27.3 ± 0.787 Bq L−1 with an average value of 9.30 ± 1.45 Bq L−1. 21.4% of the samples (sample no. RMR5, RMR11 and RMR12) in the Markandeya command area exceeded the EPA’s MCL of 11.1 Bq L−1 and it was found that some samples in both the command areas were found to have radon values close to MCL value. The spatial variation in the radon concentration in the Varahi and Markandeya command area were delineated by constructing the contour map. The total annual effective dose resulting from radon in groundwater of both Varahi and Markandeya command areas were significantly lower than the UNSCEAR and WHO recommended limit for members of the public of 1 mSv year−1.  相似文献   

17.
Radon-222 has become a widely used tracer of submarine groundwater discharge. However, remote field studies are often limited by the need to pump water to a spray chamber which degasses dissolved radon for subsequent analysis in the gaseous phase. We develop here a new method of degassing dissolved 222Rn, utilizing a stream of bubbles driven by the internal air pump of a commercial radon analyzer to achieve air:water partitioning equilibrium, eliminating the need to pump water. This system utilizes a sparging chamber, comprised of a slotted vertically-oriented pipe with bubbles produced in the bottom. A non-slotted section of the pipe at the top of the chamber forms a sealed headspace, allowing air to be circulated in a closed loop between the sparging chamber and a radon-in-air monitor. We found that such a sparging chamber needs to allow bubbles to rise through at least 45 cm of water column to function at equal efficiency as the standard protocol of the spray chamber. Under our optimized configuration, the sparging chamber operates as efficiently as the standard protocol at measuring dissolved 222Rn activities when encountering increasing 222Rn activities, and offers even greater gas exchange efficiency when dissolved 222Rn activities decrease. The sparging chamber offers a more field-friendly alternative to measuring 222Rn activities, as it eliminates the need to maintain a submersible pump throughout the measurement and it offers increased temporal resolution when variable 222Rn activities are expected.  相似文献   

18.
We have measured the variation of atmospheric pressure and of 222Rn activity concentration in the air of a wine cellar with an AlphaGAURD type ionization chamber radon monitor. We have found that the 222Rn activity concentration varies inversely with pressure. To explain this behavior we have done model calculations. We have compared the results of model calculations with the results of experimental measurements, and we have found that the model is capable to reproduce some part of the variation of 222Rn activity concentration.  相似文献   

19.
Otoliths are bony structures found in the ears of fish and used in the210Pb/226Ra dating method for age determination. This paper checks the assumption that222Rn is not lost from or added to orange roughy fish otoliths by diffusion, which would invalidate the technique. The first method of monitoring diffusion relies on measuring the gamma activity of daughter radionuclides. Otoliths were exposed to an atmosphere enriched in222Rn for 10 days, and the supported gamma activity inside them measured allowing for various decay corrections. The calculated radon addition was (0.5±0.5)% of the activity of the226Ra present. The second method used an alpha spectrometer and attempted to detect222Rn directly outgased from otoliths in the detector vacuum chamber. The results were consistent within errors with those of the first method and showed no loss or gain of222Rn, supporting previous estimates of a long life-span for the orange roughy. In contrast it was found that approximately 10% of222Rn formed in orange roughy fish scales was lost to an evacuated environment, (hence perhaps to an aqueous environment) and that for this species it could be difficult to base a dating method on analysis of scales. Nevertheless a preliminary minimum age of 57 years was obtained. The methods could be used with non-biological samples to determine222Rn diffusion rates.  相似文献   

20.
The adsorption coefficient is the fundamental parameter characterizing activated charcoal"s ability to adsorb 222Rn. The adsorption coefficient is determined for 222Rn activated charcoal detectors. In addition, a diffusion and adsorption model is developed for the transport of 222Rn in a porous bed of activated charcoal. These processes can be described by parabolic second order differential equation. The equation is numerically solved using the finite differences method. With this model, the 222Rn activity adsorbed in the detector is calculated for diverse situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号