首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In this paper, the differential quadrature (DQ) method is presented for easy and effective analysis of isotropic functionally graded (FG) and functionally graded coated (FGC) thin plates with constant Poisson’s ratio and varying Young’s modulus in the thickness direction. The bending of FG and FGC plates under transverse loading has been studied using the polynomial differential quadrature (PDQ) and the harmonic differential quadrature (HDQ) methods. A three-dimensional elasticity solution for a moderately thick FG plate with exponential Young’s modulus is used as the benchmark. Two examples, including a thin FG rectangular plate and a thin FGC rectangular plate with sigmoidal Young’s modulus, are investigated. The numerical results of PDQ and HDQ methods reveal good agreement with other solutions. Also, it is shown that the formulations for thin FG plates and homogeneous plates are similar, except that the plane strain components of the middle surface in FG plates are not zero.  相似文献   

2.
The three-dimensional free vibration analysis of a multi-directional functionally graded piezoelectric(FGP) annular plate resting on two parameter(Pasternak)elastic foundations is investigated under different boundary conditions. The material properties are assumed to vary continuously along the radial and thickness directions and have exponent-law distribution. A semi-analytical approach named the state space based differential quadrature method(SSDQM) is used to provide an analytical solution along the thickness using the state space method(SSM) and an approximate solution along the radial direction using the one-dimensional differential quadrature method(DQM).The influence of the Winkler and shear stiffness of the foundation, the material property graded variations, and the circumferential wave number on the non-dimensional natural frequency of multi-directional FGP annular plates is studied.  相似文献   

3.
A. Jodaei 《Meccanica》2014,49(1):215-237
Three-dimensional elasticity solution for static analysis of functionally graded piezoelectric (FGP) annular plates with and without elastic foundations through using state-space based differential quadrature method (SSDQM) at different boundary conditions is presented in this paper. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the mechanical behavior of FGP annular plates. The state variables include a combination of electric potential, electric displacement, three mechanical displacement parameters and three stress parameters. Numerical results are given to demonstrate the convergency and accuracy of the present method. Both closed circuit and open circuit effects are studied and the influences of the Winkler and shearing layer elastic coefficients of the foundations, the material property graded index, radius, thickness, mechanical load and boundary conditions on the deflection response of the FGP annular plates are investigated. The new results can be used as a benchmark solutions for future researches.  相似文献   

4.
张纯  仲政 《力学季刊》2006,27(4):668-674
利用混合微分求积法,对任意荷载作用下不同材料梯度分布的功能梯度材料平板柱形弯曲问题进行了分析。针对广义微分求积法求解集中荷载问题精度不高的缺点,本文利用小波微分求积法进行了改进。由于小波对突变信号具有良好的自适应描述能力,因此在平板宽度方向上,利用小波微分求积法可以有效地处理集中荷载;而在材料梯度变化的板厚方向上,则利用广义微分求积法计算量小且精度高的特点进行离散计算。计算表明,混合微分求积法不仅保留了广义微分求积法高效的特点,而且能有效地求解任意荷载作用的问题。通过算例,分析了在机械荷载作用下,材料不同梯度形式、平板上下表面材料性质差异对功能梯度平板结构响应的影响。  相似文献   

5.
In this paper, a new numerical technique, the differential quadrature element method (DQEM) , has been developed for static analysis of the two-dimensional polar Reissner–Mindlin plate in the polar coordinate system by integrating the domain decomposition method (DDM) with the differential quadrature method (DQM) . The detailed formulations for the sectorial DQEM plate bending element and the compatibility conditions between each element are presented. The convergence properties and the accuracy of the DQEM for bending of thick polar plates are investigated through a number of numerical computations. Consequently, the DQEM has been successfully applied to analyze several annular sector plates with discontinuous loading and boundary conditions and cutouts to illustrate the simplicity and flexibility of this method for solving Reissner–Mindlin plates in polar coordinate system which are not solvable directly using the differential quadrature method. The numerical results are verified by the existing exact solutions or the FEM solutions obtained using the software package ANSYS (Version 5.3) .  相似文献   

6.
Three-dimensional free vibration analysis of functionally graded piezoelectric (FGPM) annular plates resting on Pasternak foundations with different boundary conditions is presented. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the influences of the Winkler and shearing layer elastic coefficients of the foundations on the non-dimensional natural frequencies of functionally graded piezoelectric annular plates. The analytical solution in the thickness direction can be acquired using the state-space method and approximate solution in the radial direction can be obtained using the one-dimensional differential quadrature method. Numerical results are given to demonstrate the convergency and accuracy of the present method. The influences of the material property graded index, circumferential wave number and thickness of the annular plate on the dynamic behavior are also investigated. Since three-dimensional free vibration analysis of FGPM annular plates on elastic foundations has not been implemented before, the new results can be used as benchmark solutions for future researches.  相似文献   

7.
杨杰  沈惠申 《力学季刊》2002,23(3):342-346
功能梯度材料(FGM)是一类具有广阔应用前景的新型复合材料。本文考虑材料物性参数随坐标和温度变化的特性,研究横向荷载和面内预加荷载作用下FGM矩形板在各种边界条件下的弯曲问题。给出了基于一维微分求积格式的Galerkin技术的半解析方法,并以ZrO2/Ti-6Al-4V板为例考察了材料组分,温度相关性,面内预加荷载,边界约束条件等对FGM板弯曲行为的影响。结果表明,FGM板的弯曲变形介于各向同性陶瓷板与各向同性金属板之间,且随板抗弯刚度的增大而逐步减小,在高温下条件下必须考虑材料物性和温度的相关性。  相似文献   

8.
功能梯度中厚圆/环板轴对称弯曲问题的解析解   总被引:3,自引:0,他引:3  
基于一阶剪切变形板理论,导出了热/机载荷作用下,位移形式的功能梯度 中厚圆/环板轴对称弯曲问题的控制方程,获得了问题的位移和内力的一般解析解. 作为特 例,分别研究了边缘径向固定和可动的夹紧和简支的4种实心功能梯度圆板,给出了它们的 解,并分析了热/机载荷作用下解的形态,讨论了横向剪切变形、材料梯度常数和边界条件, 对板的轴对称弯曲行为的影响.  相似文献   

9.
黄钟民  谢臻  张易申  彭林欣 《力学学报》2021,53(9):2541-2553
发展了一种求解面内变刚度功能梯度薄板弯曲问题的神经网络方法. 面内变刚度薄板弯曲问题的偏微分控制方程为一复杂的4阶偏微分方程, 传统的基于强形式的神经网络解法在求解该偏微分方程时可能会遇到难以收敛、边界条件难以处理的情况. 本文基于Kirchhoff薄板弯曲理论, 提出了一种直角坐标系下任意面内变刚度薄板弯曲问题的神经网络解法. 神经网络模型包含挠度网络与弯矩网络, 分别用于预测薄板的挠度与弯矩, 从而将求解4阶偏微分方程转换为求解一系列二阶偏微分方程组, 通过对挠度、弯矩试函数的构造可使得神经网络计算结果严格满足边界条件. 在误差的反向传播中, 根据本文提出的误差函数公式计算训练误差并结合Adam优化算法更新模型的内部参数. 求解了不同边界条件、形状的面内变刚度薄板弯曲问题, 并将所得计算结果与理论解、有限元解进行对比. 研究表明, 本文模型对于求解面内变刚度薄板弯曲问题具备适应性, 虽然模型中的弯矩网络收敛较挠度网络要慢, 但本文方法在试函数的构造上更为简单、适应性更强.   相似文献   

10.
Free vibration analysis of functionally graded (FG) thin-to-moderately thick annular plates subjected to thermal environment and supported on two-parameter elastic foundation is investigated. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle based on the first order shear deformation theory (FSDT). The initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic and FG circular and annular plates. The effects of the temperature rise, elastic foundation coefficients, the material graded index and different geometrical parameters on the frequency parameters of the FG annular plates are investigated. The new results can be used as benchmark solutions for future researches.  相似文献   

11.
Elasticity solutions are presented for bending and thermal deformations of functionally graded beams with various end conditions, using the state space-based differential quadrature method. The beams are assumed to be macroscopically isotropic, with Young’s modulus varying exponentially along the thickness and longitudinal directions, while Poisson’s ratio remaining constant. The state space method is adopted to obtain analytically the thickness variation of the elastic field and, when coupled with differential quadrature, the longitudinal discretization can be analyzed in an approximate manner. This approach is then validated by comparing the numerical results with the exact solutions for a special functionally graded beam and with finite element solutions. The influences of material gradient indices on the response of bi-directional functionally graded beams are finally investigated.  相似文献   

12.
This study is concerned with the elastic bending problem of a class of annular sectorial plates whose radial edges are simply supported. Exact bending relationships between the Mindlin plate results and the corresponding Kirchhoff plate solutions have been derived based on the concept of load equivalence. These bending relationships facilitate the deduction of thick (Mindlin) plate results from the corresponding classical thin (Kirchhoff) plate solutions, thus bypassing the need to solve the more complicated governing equations of thick plates. The correctness of the relationships is established by solving the bending problem of annular sectorial plates under a uniformly distributed load and comparing the results with existing thick plate solutions.  相似文献   

13.
Based on the Reddy ‘s theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature ( DQ ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert ( DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated. Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant.  相似文献   

14.
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material(FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-ofvariables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.  相似文献   

15.
The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner’s linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson’s ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner’s plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner’s effect when the in-homogeneity parameter approaches zero.  相似文献   

16.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

17.
In this paper free vibration of continuous grading fiber reinforced (CGFR) annular plates on an elastic foundation, based on the three-dimensional theory of elasticity, for different boundary conditions at the circular edges is investigated. The foundation is described by the Pasternak or two-parameter model. The CGFR annular plates have an arbitrary variation of fiber volume fraction in the thickness direction. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Besides, results for CGFR plate with arbitrary variation of fiber volume fraction in the thickness direction of the plate are compared with discrete laminated composite plate. The main contribution of this work is to present useful results for continuous grading of fiber reinforcement in the thickness direction of a plate on an elastic foundation and comparison with similar discrete laminated composite plate. The interesting and new results show that non-dimensional natural frequency parameters of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. The new results can be taken as the benchmark solutions for those from numerical methods and future researches.  相似文献   

18.
Assuming the material properties varying with an exponential law both in the thick- ness and radial directions,axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper.The de- flections and stresses of the plates are presented.Numerical results show the well accuracy and convergence of the method.Compared with the finite element method,the semi-analytical nu- merical method is with great advantage in the computational efficiency.Moreover,study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials.Two-directional functionally graded material is a potential alter- native to the one-directional functionally graded material.And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.  相似文献   

19.
This paper investigates the sensitivity of the post-buckling behavior of shear deformable functionally graded plates to initial geometrical imperfections in general modes. A generic imperfection function that takes the form of the product of trigonometric and hyperbolic functions is used to model various possible initial geometrical imperfections such as sine type, local type, and global type imperfections. The formulations are based on Reddy’s higher-order shear deformation plate theory and von Karman-type geometric nonlinearity. A semi-analytical method that makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process is used to obtain the post-buckling equilibrium paths of plates with various boundary conditions that are subjected to edge compressive loading together with a uniform temperature change. Special attention is given to the effects of imperfection parameters, which include half-wave number, amplitude, and location, on the post-buckling response of plates. Numerical results presented in graphical form for zirconia/aluminum (ZrO2/Al) graded plates reveal that the post-buckling behavior is very sensitive to the L2-mode local type imperfection. The influences of the volume fraction index, edge compression, temperature change, boundary condition, side-to-thickness ratio and plate aspect ratio are also discussed.  相似文献   

20.
In the present article, axisymmetric bending and stretching of functionally graded (FG) circular plates subjected to uniform transverse loading based on fourth-order shear deformation plate theory (FOST) have been studied. Using a fourth-order shear deformation theory, the solutions for deflection and rotation functions of FG plates are presented in terms of the corresponding quantities for a homogeneous plate using the classical plate theory (CPT), from which solutions one can easily obtain the FOST solutions for axisymmetric bending of FG circular plates. It is assumed that the effective mechanical properties of the functionally graded plates through the thickness are continuous functions of the volume fractions of the constituent parts which are themselves defined by a power-law function. Numerical results for maximum deflection and shear stress are presented for various percentages of ceramic–metal volume fractions. These results are also compared with those obtained from the first-order shear deformation plate theory of Mindlin (FST), the third-order shear deformation plate theory of Reddy (TST) as well as the exact three-dimensional elasticity solution. It is found that although the maximum deflections obtained using FOST and TST are close to each other, the through-thickness shear stress is predicted more accurately by the FOST formulation than by the TST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号