首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
The dihydrogen adsorption isotherms of eight metal-organic frameworks (MOFs), measured at 77 K up to a pressure of 1 atm, have been examined for correlations with their structural features. All materials display approximately Type I isotherms with no hysteresis, and saturation was not reached for any of the materials under these conditions. Among the six isoreticular MOFs (IRMOFs) studied, the catenated materials exhibit the largest capacities on a molar basis, up to 9.8 H(2) per formula unit. The addition of functional groups (-Br, -NH(2), -C(2)H(4)-) to the phenylene links of IRMOF-1 (MOF-5), or their replacement with thieno[3,2-b]thiophene moieties in IRMOF-20, altered the adsorption behavior by a minor amount despite large variations in the pore volumes of the resulting materials. In contrast, replacement of the metal oxide units with those containing coordinatively unsaturated metal sites resulted in greater H(2) uptake. The enhanced affinities of these materials, MOF-74 and HKUST-1, were further demonstrated by calculation of the isosteric heats of adsorption, which were larger across much of the range of coverage examined, compared to those of representative IRMOFs. The results suggest that under low-loading conditions, the H(2) adsorption behavior of MOFs can be improved by imparting larger charge gradients on the metal oxide units and adjusting the link metrics to constrict the pore dimensions; however, a large pore volume is still a prerequisite feature.  相似文献   

2.
吴选军  郑佶  李江  蔡卫权 《物理化学学报》2013,29(10):2207-2214
采用优化的DREIDING力场参数, 通过巨正则系综蒙特卡洛(GCMC)模拟方法对H2在IRMOF-1、IRMOF-61和IRMOF-62共3种金属有机骨架(MOFs)材料中的吸附平衡性能进行了比较研究. 结果表明, 该力场能够在全压力范围内很好地复制H2在IRMOF-62材料中的等温吸附曲线; 但对低压下H2在IRMOF-61中的等温吸附曲线预测出现低估. 与IRMOF-1相比, 具有互穿骨架结构的IRMOF-61和IRMOF-62材料在常温下的储氢能力并无明显提高. 进一步比较77 K时100 kPa、3.0 MPa下H2在上述MOFs材料中达到吸附平衡时的几率密度分布发现, H2会优先吸附在Zn4O骨架附近靠近苯环的位置;对具有互穿结构的MOFs材料而言,由于其孔腔尺寸缩小, 使得H2优先吸附位区域零散化. 适当长度的有机配体形成的互穿骨架结构能增强与H2分子之间的相互作用, 具备较高的储氢能力; 而有机配体尺寸过长则会增加骨架结构中H2吸附死角, 对H2的吸附能力反而出现下降.  相似文献   

3.
Recently we have investigated the storage and adsorption selectivity of CO(2) and CH(4) in three different classes of nanoporous materialssilicalite, IRMOF-1, and C(168) schwarzite through Monte Carlo simulation (Babarao, R.; Hu, Z.; Jiang, J. Langmuir, 2007, 23, 659). In this work, the self-, corrected, and transport diffusivities of CO(2) and CH(4) in these materials are examined using molecular dynamics simulation. The activation energies at infinite dilution are evaluated from the Arrhenius fits to the diffusivities at various temperatures. As loading increases, the self-diffusivities in the three frameworks decrease as a result of the steric hindrance; the corrected diffusivities remain nearly constant or decrease approximately linearly depending on the adsorbate and framework; and the transport diffusivities generally increase except for CO(2) in IRMOF-1. The correlation effects are identified to reduce from MFI, C(168) to IRMOF-1, in accordance with the porosity increasing in the three frameworks. Predictions of self-, corrected, and transport diffusivities for pure CO(2) and CH(4) from the Maxwell-Stefan formulation match the simulation results well. In a CO(2)/CH(4) mixture, the self-diffusivities decreases with loading, and good agreement is found between simulated and predicted results. On the basis of the adsorption and self-diffusivity in the mixture, the permselectivity is found to be marginal in IRMOF-1, slightly enhanced in MFI, and greatest in C(168) schwarzite. Although IRMOF-1 has the largest storage capacity for CH(4) and CO(2), its selectivity is not satisfactory.  相似文献   

4.
The adsorption of 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP) on representative fragments of metal organic framework (IRMOF-1) was studied at the B3LYP/6-31G(d) level of theory. For examined adsorbates several possible adsorption positions toward the IRMOF-1 fragments were found. The adsorption strength of the adsorbate on IRMOF-1 is largely affected by the geometry of the active site of IRMOF-1 which controls the orientation of the target molecule with respect to the IRMOF-1 fragment. The calculations show that the adsorption on these fragments occurs due to the formation of hydrogen bonds between the molecular C–H groups and the oxygen atoms of IRMOF-1. The RDX and TATP molecules are the most strongly adsorbed on the linker fragment of IRMOF-1. This type of adsorption results in the polarization of RDX and TATP on the IRMOF-1 fragments. The interaction energy of two most stable RDX-, and TATP-IRMOF-1 adsorption systems are ?9.8 and ?12.8 kcal/mol, respectively. It can be concluded that the 1,4-benzenedicarboxylate site of IRMOF-1 shows the stronger molecular adsorption of RDX and TATP than the site containing [Zn4O(CO2)6] and also it is characterized by higher reactivity than the other considered sites. The binding of studied explosive molecules to IRMOF-1 consists of interplay between attractive interactions between the target molecule and MOF as well as the shielding by the IRMOF-1 fragment induced by the molecular adsorption. The relative importance of these effects depends on the chemical nature, the size, and the shape of the molecule and MOF. Small-size molecules require smaller space for the adsorption and also they are less shielded by the sizeable adsorbent. So they interact better when adsorbed on larger IRMOF-1 fragment. On the other side, larger molecules show higher adsorption strength with small fragments of IRMOF-1.  相似文献   

5.
Novel metal-organic frameworks (MOFs) may lead to advances in adsorption and catalysis owing to their superior properties compared to traditional nanoporous materials. A combination of the grand canonical Monte Carlo method and configurational-bias Monte Carlo simulation was used to evaluate the adsorption isotherms of C4-C6 alkane isomer mixtures in IRMOF-1 and IRMOF-6. The amounts of adsorbed linear and branched alkanes increase with increasing pressure, and the amount of branched alkanes is larger than that of the linear ones. The locations of the alkane isomer reveal that the Zn4O clusters of the IRMOFs are the preferential adsorption sites for the adsorbate molecules. The interaction energy between the Zn4O cluster and the adsorbate is larger than that between the organic linker and the adsorbate. It was further confirmed that the Zn4O cluster plays a much more important role in adsorption by pushing a probe molecule into the pore at positions closer to the Zn4O cluster. It is difficult for branched alkane molecules to approach the Zn4O cluster of IRMOF-6 closely owing to strong spatial hindrance. In addition, the adsorption selectivity is discussed from the viewpoints of thermodynamics and kinetics, and the diffusion behavior of n-butane and 2-methylpropane were investigated to illustrate the relationship between diffusion and adsorption.  相似文献   

6.
The role of low binding energy sites on the adsorption of H(2) in metal-organic frameworks (MOFs) with unsaturated metal centers has not been identified. For instance, the importance of the benzene sites on H(2) adsorption at the metal site in MOF-74 has not been established. We report here experimental evidence that unambiguously shows that the internal mode of H(2) adsorbed at the metal site undergoes both a frequency shift and a marked change in its dynamic dipole moment when H(2) is adsorbed at the next nearest neighbor "benzene" site in MOF-74-Co. The effect of loading (i.e., occupation of all benzene sites) also induces spectroscopic shifts in H(2) at the metal site. These interactions highlight the role of lower binding energy sites in H(2) adsorption.  相似文献   

7.
Recently, several novel isoreticular metal-organic framework (IRMOF) structures have been fabricated and tested for hydrogen storage applications. To improve our understanding of these materials, and to promote quantitative calculations and simulations, the binding energies of hydrogen molecules to the MOF have been studied. High-quality second-order Moller-Plesset (MP2) calculations using the resolution of the identity approximation and the quadruple zeta QZVPP basis set were used. These calculations use terminated molecular fragments from the MOF materials. For H2 on the zinc oxide corners, the MP2 binding energy using Zn4O(HCO2)6 molecule is 6.28 kJ/mol. For H2 on the linkers, the binding energy is calculated using lithium-terminated molecular fragments. The MP2 results with coupled-cluster singles and doubles and noniterative triples method corrections and charge-transfer corrections are 4.16 kJ/mol for IRMOF-1, 4.72 kJ/mol for IRMOF-3, 4.86 kJ/mol for IRMOF-6, 4.54 kJ/mol for IRMOF-8, 5.50 and 4.90 kJ/mol for IRMOF-12, 4.87 and 4.84 kJ/mol for IRMOF-14, 5.42 kJ/mol for IRMOF-18, and 4.97 and 4.66 kJ/mol for IRMOF-993. The larger linkers are all able to bind multiple hydrogen molecules per side. The linkers of IRMOF-12, IRMOF-993, and IRMOF-14 can bind two to three, three, and four hydrogen molecules per side, respectively. In general, the larger linkers have the largest binding energies, and, together with the enhanced surface area available for binding, will provide increased hydrogen storage. We also find that adding up NH2 or CH3 groups to each linker can provide up to a 33% increase in the binding energy.  相似文献   

8.
The adsorption of ammonia in four metal-organic frameworks modified with different functional groups (-OH, -C=O, -Cl, -COOH) was investigated using a hierarchical molecular modeling approach. To describe the hydrogen bonding and other strong interactions between NH(3) and the surface functional groups, a set of Morse potential parameters were obtained by fitting to energies from quantum chemical calculations at the MP2 level of theory. We describe a systematic force field parameterization process, in which the Morse parameters were fitted using simulated annealing to match a large number of single-point MP2 energies at various distances and angles. The fitted potentials were then used in grand canonical Monte Carlo simulations to predict ammonia adsorption isotherms and heats of adsorption in functionalized MIL-47, IRMOF-1, IRMOF-10, and IRMOF-16. The results show that ammonia adsorption can be significantly enhanced by using materials with appropriate pore size, strongly interacting functional groups, and high density of functional groups.  相似文献   

9.
The pendant amino groups in isoreticular metal-organic framework-3 (IRMOF-3) were subjected to postsynthetic modification with 10 linear alkyl anhydrides (O(CO(CH2)nCH3)2 (where n = 1 to 18) and the extent of conversion, thermal and structural stability, and Brunauer-Emmett-Teller (BET) surface areas of the resulting materials were probed. (1)H NMR of digested samples showed that longer alkyl chain anhydrides resulted in lower conversions of IRMOF-3 to the corresponding amide framework (designated as IRMOF-3-AM2 to IRMOF-3-AM19). Percent conversions ranged from essentially quantitative (approximately 99%, -AM2) to approximately 7% (-AM19) with IRMOF-3 samples. Modified samples were thermally stable up to approximately 430 degrees C and remained crystalline based on powder X-ray diffraction (PXRD) measurements. Under specific reaction conditions, significant conversions were obtained with complete retention of crystallinity, as verified by single-crystal X-ray diffraction experiments. Single crystals of modified IRMOF-3 samples all showed that the F-centered cubic framework was preserved. All single crystals used for X-ray diffraction were analyzed by electrospray ionization mass spectrometry (ESI-MS) to confirm that these frameworks contained the modified 1,4-benzenedicarboxylate ligand. Single crystals of each modified IRMOF-3 were further characterized by measuring the dinitrogen gas sorption of each framework to determine the effects of modification on the porosity of the MOF. BET surface areas (m(2)/g) confirmed that all modified IRMOF-3 samples maintained microporosity regardless of the extent of modification. The surface area of modified MOFs was found to correlate to the size and number of substituents added to the framework.  相似文献   

10.
《中国化学快报》2022,33(7):3556-3560
Based on the outstanding application advantages of nitrogen-rich materials with regular porous frameworks in the capture of gaseous radioactive iodine, a series of covalent organic frameworks (COFs) with dual channels and abundant tertiary-amine active sites were constructed herein via a unique multi-nitrogen node design. The high density of up-to-six nitrogen adsorption sites in a single structural unit of the products effectively improved the adsorption capacities of the materials for iodine. Moreover, the adsorption affinity of the active sites can be further regulated by charge-induced effect of different electron-donating groups introduced into the COFs. Adsorption experiments combined with DFT theoretical calculations confirmed that the introduction of electron-donating groups can effectively increase the electron density around the active sites and enhance the binding energy between the materials and iodine, and thus improve the iodine adsorption capacity to 5.54 g/g. The construction strategy of multi-nitrogen node and charge-induced effect proposed in this study provides an important guidance for the study of the structure-activity relationship of functional materials and the design and preparation of high-performance iodine adsorption materials.  相似文献   

11.
An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single‐crystal of a porous metal–organic framework, is demonstrated to have considerable advantages over other gas‐loading methods when investigating host–guest interactions. Specifically, loading the metal–organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3–25 kbar demonstrates hyperfilling of the Sc2BDC3 and two high‐pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system.  相似文献   

12.
In the ongoing search for promising compounds for hydrogen storage, novel porous metal-organic frameworks (MOFs) have been discovered recently [M. Eddadoudi, J. Kim, N. L. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Science 295, 469 (2002); N. L. Rosi, J. Eckert, M. Eddadoudi, D. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Science 300, 1127 (2003)]. Binding sites in these MOFs were deduced from inelastic neutron scattering (INS) spectroscopy of the rotational transitions of the adsorbed molecular hydrogen. In light of this discovery, it is important to have a fundamental understanding of hydrogen adsorption at different sites in this class of MOF materials. As a first step, here we study the case of H(2) adsorbed on benzene as a model of the organic linkers in the microporous crystal. We access the density functional theory results by comparing with correlated ab initio methods, e.g., second-order M?ller-Plesset and coupled cluster with noniterative triple excitations. Different approximations for the exchange-correlation potentials were accessed for a set of relevant properties (binding energy, energetically favored configuration, and distance between the adsorbents and adsorbates). In particular, theoretical rotational spectra of the adsorbed H(2) were obtained that could be compared to the experimental INS spectra.  相似文献   

13.
The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF‐23, PAF‐24, and PAF‐25 are built up by a tetrahedral building unit, lithium tetrakis(4‐iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira–Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their “breathing” dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal–organic frameworks, and porous organic frameworks) reported to date.  相似文献   

14.
To safeguard the development of nuclear energy, practical techniques for capture and storage of radioiodine are of critical importance but remain a significant challenge. Here we report the synergistic effect of physical and chemical adsorption of iodine in tetrathiafulvalene-based covalent organic frameworks (COFs), which can markedly improve both iodine adsorption capacity and adsorption kinetics due to their strong interaction. These functionalized architectures are designed to have high specific surface areas (up to 2359 m2 g−1) for efficient physisorption of iodine, and abundant tetrathiafulvalene functional groups for strong chemisorption of iodine. We demonstrate that these frameworks achieve excellent iodine adsorption capacity (up to 8.19 g g−1), which is much higher than those of other materials reported so far, including silver-doped adsorbents, inorganic porous materials, metal–organic frameworks, porous organic frameworks, and other COFs. Furthermore, a combined theoretical and experimental study, including DFT calculations, electron paramagnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, reveals the strong chemical interaction between iodine and the frameworks of the materials. Our study thus opens an avenue to construct functional COFs for a critical environment-related application.

The synergistic effect of physical and chemical adsorption of iodine in tetrathiafulvalene-based covalent organic frameworks (COFs) has been explored. The iodine adsorption capacity of these materials is higher than other materials reported so far.  相似文献   

15.
金属有机框架材料的研究进展   总被引:1,自引:0,他引:1  
金属有机框架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心经过自组装形成的具有可调节孔径的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构及功能更加多样,因而已经被广泛应用于气体吸附与分离、传感器、药物缓释、催化反应等领域中。新兴材料的出现极大地促进了各个学科间的相互发展,本文综述了近年来MOFs材料的研究发展,包括MOFs材料自身的特点、国内外发展现状、应用领域以及复合MOFs材料的研究热点,并对今后的发展进行了展望。  相似文献   

16.
Four isostructural CPO-54-M metal-organic frameworks based on the larger organic linker 1,5-dihydroxynaphthalene-2,6-dicarboxylic acid and divalent cations (M=Mn, Mg, Ni, Co) are shown to be isoreticular to the CPO-27 (MOF-74) materials. Desolvated CPO-54-Mn contains a very high concentration of open metal sites, which has a pronounced effect on the gas adsorption of N2, H2, CO2 and CO. Initial isosteric heats of adsorption are significantly higher than for MOFs without open metal sites and are slightly higher than for CPO-27. The plateau of high heat of adsorption decreases earlier in CPO-54-Mn as a function of loading per mole than in CPO-27-Mn. Cluster and periodic density functional theory based calculations of the adsorbate structures and energetics show that the larger adsorption energy at low loadings, when only open metal sites are occupied, is mainly due to larger contribution of dispersive interactions for the materials with the larger, more electron rich bridging ligand.  相似文献   

17.
Exceptional H2 saturation uptake in microporous metal-organic frameworks   总被引:1,自引:0,他引:1  
Saturation H2 uptake in a series of microporous metal-organic frameworks (MOFs) has been measured at 77 K. Saturation pressures vary between 25 and 80 bar across the series, with MOF-177 showing the highest uptake on a gravimetric basis (7.5 wt %) and IRMOF-20 showing the highest uptake on a volumetric basis at 34 g/L. These results demonstrate that maximum H2 storage capacity in MOFs correlates well to surface area, and that feasible volumetric uptakes can be realized even in highly porous materials.  相似文献   

18.
Two novel 3D coordination polymers, Cd(CTC)(H2O).(H2PIP)(0.5)(H2O) (1) with zeolite ABW topology and Cd(CTC).(HIPA) (2) with zeolite BCT topology, have been synthesized by constructing inorganic and organic 4-connected building units and using the organic bases as templates, and the frameworks of and not only expand the original structures of zeolites ABW and BCT, but also exhibit significant advantages over them in terms of thermal stability, ion exchange and adsorption.  相似文献   

19.
A series of metal-organic frameworks based on a flexible, highly charged Bpybc ligand, namely 1?Mn?OH(-), 2?Mn?SO(4)(2-), 3?Mn?bdc(2-), 4?Eu?SO(4)(2-) (H(2)BpybcCl(2) = 1,1'-bis(4-carboxybenzyl)-4,4'-bipyridinium dichloride, H(2)bdc = 1,4-benzenedicarboxylic acid) have been obtained by a self-assembly process. Single-crystal X-ray-diffraction analysis revealed that all of these compounds contained the same n-fold 2D→3D Borromean-entangled topology with irregular butterfly-like pore channels that were parallel to the Borromean sheets. These structures were highly tolerant towards various metal ions (from divalent transition metals to trivalent lanthanide ions) and anion species (from small inorganic anions to bulky organic anions), which demonstrated the superstability of these Borromean linkages. This non-interpenetrated entanglement represents a new way of increasing the stability of the porous frameworks. The introduction of bipyridinium molecules into the porous frameworks led to the formation of cationic surface, which showed high affinities to methanol and water vapor. The distinct adsorption and desorption isotherms of methanol vapor in four complexes revealed that the accommodated anion species (of different size, shape, and location) provided a unique platform to tune the environment of the pore space. Measurements of the adsorption of various organic vapors onto framework 1?Mn?OH(-) further revealed that these pores have a high adsorption selectivity towards molecules with different sizes, polarities, or π-conjugated structures.  相似文献   

20.
Hydrogen sorption in functionalized metal-organic frameworks   总被引:12,自引:0,他引:12  
Five porous metal-organic frameworks based on linking zinc oxide clusters with benzene-1,4-dicarboxylate, naphthalene-2,6-dicarboxylate, 4,5,9,10-tetrahydropyrene-2,7-dicarboxylate, 2,3,5,6-tetramethylbenzene-1,4-dicarboxylate, or benzene-1,3,5-tris(4-benzoate) were synthesized in gram-scale quantities to measure their hydrogen uptake properties. Hydrogen adsorption isotherms measured at 77 K show a distinct dependence of uptake on the nature of the link. At 1 atm, the materials sorb between 4.2 and 9.3 molecules of H2 per formula unit. The results imply a trend in hydrogen uptake with the number of rings in the organic moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号