首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A special bi-anode plasma torch that can change the anode arc root position without changing working gas flow rate has been developed to investigate the effect of anode arc root position on the behavior of the plasma jet. It has two nozzle-shaped anodes at different axial distances from the cathode tip. The arc root can be formed at anodes either close to the cathode tip (anode I) or far away from it (anode II) to obtain different attachment positions and arc voltages. The characteristics of pure argon plasma jets operated in different anode modes were measured in the field free region by using an emalpy probe, and the thermal efficiency of the torch was determined by measuring the temperature differences between cooling water flowing in and out of the torch. The results show that compared with the normal arc operated in anode I mode, the elongated arc operated in anode II mode significantly reduced the plasma energy loss inside the torch, resulting in a higher temperature and a higher velocity of the plasma jet in the field free region.  相似文献   

2.
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 times its diameter could be generated with a DC arc torch by restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including arc channel geometry, gas flow rate, and feeding methods, etc. Influence of flow turbulence at the torch nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent arc jet.  相似文献   

3.
Argon DC plasma jets in stable laminar flow were generated at atmospheric pressure with a specially designed torch under carefully balanced generating conditions. Compared with turbulent jets of short length with expanded radial appearance and high working noise, the laminar jet could be 550 mm in length with almost unchanged diameter along the whole length and very low noise. At gas feeding rate of 120 cm3/s, the jet length increases with increasing arc current in the range of 70–200 A, and thermal efficiency decreases slightly at first and then leveled off. With increasing gas flow rate, thermal efficiency of the laminar jets increases and could reach about 40%, when the arc current is kept at 200 A. Gauge pressure distributions of the jets impinging on a flat plate were measured. The maximum gauge pressure value of a laminar jet at low gas feeding rate is much lower than that of a turbulent jet. The low pressure acting on the material surface is favorable for surface cladding of metals, whereas the high pressure associated with turbulent jets will break down the melt pool.  相似文献   

4.
Measurements of composition, temperature, and velocity in atmospheric argon plasma jets are reported, using enthalpy probes. The plasma jets are generated by a commercial type plasma gun and the measurements are expected to be of particular interest for industrial applications such as plasma spraying. Emphasis has been on the central and downstream regions of the plasma flame. The entrainment of air into the jet was found to be very high, even close to the axis of the jet. Gas samples analyzed with a gas chromatograph showed demixing of the air, i.e., nitrogen is more abundant in the jet than at room temperature. The high air entrainment has a strong cooling effect on the plasma, resulting in a rapid temperature drop along the axis. The influence of the argon flow rate and of the arc current on the jet's conditions was parametrically studied. Matching of the quantities measured in the jet with the torch input confirmed the validity of the results, and the relevance of enthalpy probe diagnostics in thermal plasma jets.  相似文献   

5.
External injection of high-melting point low thermal conductivity ceramics orthogonal to a typical direct current thermal plasma jet plays a vital role in determining the in-flight state of the particles and the process downstream. The interactions between low density ceramic particles and high temperature plasma jet is quite complex, which influences the spray process and associated deposition. Detailed in-flight particle diagnostics as well as spray stream visualization have significantly enhanced our capability to diagnose and control the process. In this paper we present some salient observations on the role of key variables on particle injection. A number of experiments were conducted using a 7MB torch (Sulzer Metco, Westbury, NY) with both Ar–H2 and N2–H2 plasma gases, where the carrier gas flow to inject Yttria Stabilized Zirconia (YSZ) was varied systematically and the resulting in-flight particle state was captured using an array of particle and spray stream sensors arranged in a 3D set-up. A notable observation is the existence of a “sweet-spot” in the plasma jet where the particle temperatures and velocities achieved a maximum. This sweet-spot can be characterized by the plume position (location of centroid of the spray stream) rather than carrier gas flow rate and is independent of primary gas flows and other process/material conditions. This result suggests a possible approach to optimize particle injection independent of plasma-forming-torch-parameters. Controlling particle injection at this sweet-spot has shown to benefit the overall process efficiency (in terms of melting) and process reliability (both in-flight measurement and coating build-up) with concomitant application benefits.  相似文献   

6.
Poly(ethylene terephthalate) (PET) film surfaces were modified by argon (Ar), oxygen (O2), hydrogen (H2), nitrogen (N2), and ammonia (NH3) plasmas, and the plasma‐modified PET surfaces were investigated with scanning probe microscopy, contact‐angle measurements, and X‐ray photoelectron spectroscopy to characterize the surfaces. The exposure of the PET film surfaces to the plasmas led to the etching process on the surfaces and to changes in the topography of the surfaces. The etching rate and surface roughness were closely related to what kind of plasma was used and how high the radio frequency (RF) power was that was input into the plasmas. The etching rate was in the order of O2 plasma > H2 plasma > N2 plasma > Ar plasma > NH3 plasma, and the surface roughness was in the order of NH3 plasma > N2 plasma > H2 plasma > Ar plasma > O2 plasma. Heavy etching reactions did not always lead to large increases in the surface roughness. The plasmas also led to changes in the surface properties of the PET surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surfaces decreased. Modification reactions occurring on the PET surfaces depended on what plasma had been used for the modification. The O2, Ar, H2, and N2 plasmas modified mainly CH2 or phenyl rings rather than ester groups in the PET polymer chains to form C? O groups. On the other hand, the NH3 plasma modified ester groups to form C? O groups. Aging effects of the plasma‐modified PET film surfaces continued as long as 15 days after the modification was finished. The aging effects were related to the movement of C?O groups in ester residues toward the topmost layer and to the movement of C? O groups away from the topmost layer. Such movement of the C?O groups could occur within at least 3 nm from the surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3727–3740, 2004  相似文献   

7.
This work was devoted to the study of the dynamic and static behavior of de vortex plasma torch with a well-type cathode (power level below 100 kW). The dynamic behavior of the torch was characterized by the fulctuations of arc voltage and current, plasma jet radiation, and acoustic pressure. Characteristic frequencies of the arc root movement inside the torch were observed. By numerical simulation (with the numerical codeMelodie, it was shown that the position of the erosion diameter) of the axial velocity along the cathode channel near the wall. The static behavior of the torch was inverstigated for different cathode designs. The variations of voltage U with arc current I, gas flow rate G nature of the gas and cathode design were represented by semiempirical relationships established between dimensionless numbers. By dimensional analysis, the behavior of this torch was compared with that of two powerful torches: the Aerospatiale and the Plasma Energy Corporation torches.  相似文献   

8.
The depth and possible mechanisms of the penetration of surface modification into porous media by a low temperature cascade are torch are investigated. Two different modes of such penetration (“flow controlled” and “diffusion controlled”) are evaluated. Three porous samples [stacks of 10 sheets of nonwoven fabrics of poly(ethylene terephthalate)each], placed at an axial distance of 24, 28, and 32 cm from the cascade are anode, are exposed to a low temperature cascade arc torch containing argon and CF4 or C2F4, and surface properties of each of the sheets within treated porous samples are examined by ESCA. It is shown that interaction of chemically reactive species, created in the low temperature cascade arc torch, with the surface is not limited to the surface directly contacted by the torch. The flow controlled penetration is more pronounced for the outer layers, while diffusion controlled penetration is within the inner layers of the porous structure. Substantial differences in the fluorination effect of CF4 (nonpolymer forming gas) and C2F4 (polymer forming gas) discharges for the second and third stacks are observed, that can be explained by the fact that the major effect of the CF4 cascade arc torch treatment is based on the reaction of reactive species with the surface polymer molecules. The effect of C2F4 cascade arc torch treatment is based on the reactions of reactive species with polymers as well as reactions of reactive species themselves at the surface (plasma polymerization). Reactivity of the species created in C2F4 discharge is much higher compared to that created in CF4 discharge, which is one of the major factors influencing penetration trends of low temperature cascade arc treatment into porous media. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The non-transferred direct current (DC) plasma torch has been widely used in various industrial applications due to its special jet characteristics. The jet characteristics are determined by different factors, including the working parameters, the torch construction, the gas injection angle (GIA) etc. As there is little study on the influence of the GIA on the jet characteristics, experimental study on the GIA’s effects on the jet characteristics has been carried out on a specially designed non-transferred DC plasma torch, whose GIA can be changed by replacing a gas injection component. The arc voltages and thermal efficiencies of the plasma torch, the specific enthalpies and jet lengths of the plasma jets at different working conditions were obtained and analyzed. It has been found that the GIA greatly affects the arc voltage, the thermal efficiency, the specific enthalpy and the jet length. Based on these findings, plasma torch with appropriate GIA could be used to help generating the plasma jet with desired characteristics.  相似文献   

10.
Optical Emission Spectroscopy (OES) was used to identify reactive species and their excitation states in low-temperature cascade arc plasmas of N2, CF4, C2F4, CH4, and CH3OH. In a cascade arc plasma, the plasma gas (argon or helium) was excited in the cascade arc generator and injected into a reactor in vacuum. A reactive gas was injected into the cascade arc torch (CAT) that was expanding in the reactor. What kind of species of a reactive gas, for example, nitrogen, are created in the reactor is dependent on the electronic energy levels of the plasma gas in the cascade arc plasma jet. OES revealed that no ion of nitrogen was found when argon was used as the plasma gas of which metastable species had energy less than the ionization energy of nitrogen. When helium was used, ions of nitrogen were found. While OES is a powerful tool to identify the products of the cascade arc generation (activation process), it is less useful to identify the reactive species that are responsible for surface modification of polymers and also for plasma polymerization. The plasma surface modification and plasma polymerization are deactivation processes that cannot be identified by photoemission, which is also a deactivation process. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1583–1592, 1998  相似文献   

11.
李森  吴立  徐凯  顾璠 《化学通报》2015,78(9):791-791
本文提出了一种特殊的大尺寸大气压空气等离子体射流设备。该设备采用一种高分子耐高温涂料作为介质进行放电,通过气体渐扩通道,产生大尺寸空气等离子体射流,射流直径最宽处可以达到28mm,长度可以达到数十mm。本文对射流中的活性物质进行光谱测量,同时对射流宏观温度进行测量,指出该射流温度非常接近室温,可以用于温度敏感材料的表面处理等方面。  相似文献   

12.
Based on the simulation of transmission and distribution characteristics of the electromagnetic field inmicrowave plasma torch(MPT) torches with different configurations using electromagnetic simulation software and experimental study, a new MPT torch with double resonant configuration was, for the first time, developed. The results show that the inner tube of MPT torch plays an important role in strengthening the electric field intensity at the open end of the MPT torch and redistributing the electromagnetic field in the whole torch by the formation of the double resonance. It contributes also to enhance the macroscopic stability and the self-sustaining of the plasma. The stability of the plasma was shown to be excellent when the spacer between inner and intermediate tubes is located about 20—30 mm from the top opening of the torch. Preliminary study showed that the analytical performance for 13 common elements was approaching that of traditional ICP-AES.  相似文献   

13.
Achieving optimal hydrophobicity of polymer materials especially polymer–matrix composites is important for many material applications. Herein the interplay of factors determining hydrophobic surface is presented during CF4 plasma treatments which lead to functionalization as well as selective polymer–matrix etching. The continuous exposure to plasma reactive species induces functionalization and etching on the surface, which decides the surface morphology and surface chemistry. Consequently, exothermic processes during the plasma–surface interactions are another important factor which influences the surface chemistry and etching rate of the material. The results demonstrate that despite etching and increasing surface roughness, the major contribution to hydrophobic character is dependent on the number of carbon atoms populated with fluorine, whereas the temperature is a deciding factor for type of created bonds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.  相似文献   

15.
An optical method was used to determine the axial velocity of plasma jets produced by a DC plasma spray torch. Different experimental conditions were tested in order to systematically study the influence of the working parameters on the plasma velocity. In this way, the arc current ranged between 200 and 600 A, the gas flow rate between 30 and 80 slm, and the internal nozzle diameter between 6 and 10 mm; the plasma gases were either an Ar–H 2 mixture or N 2 . Rather well defined tendencies were observed and at the same time it appeared that the arc stability greatly influenced the fluctuations of the velocity.  相似文献   

16.
The present paper reports a study of the gas mixing and chemical transformation in an induction plasma reactor under atmospheric pressure, and its dependence on the plasma operating conditions. For this purpose, the thermal dissociation of ammonia into nitrogen and hydrogen was chosen because of the relative simplicity of the reactions involved and its use in a number of studies on plasma synthesis of ultrafine nitride ceramic powders using ammonia as nitriding agent. A hot-wall reactor configuration is investigated in which ammonia is injected radially through multiple orifices into the gases at the exit nozzle of an induction plasma torch. Concentration mapping in the mixing zone was carried out, using a VG-Micromass-PC 300 D quadrupole mass spectrometer, for different plasma power levels, in the range 13–24 kW. A 3-point injection mode is used with the injection ports oriented upstream at 45° to the torch axis. This allows uniform mixing of the injected gas in the plasma jet. A systematic study of the effects of plate power and ammonia and plasma gas flow rates on the mixing and dissociation of NH3 in the reactor is reported. The results are analyzed and discussed from the viewpoint of their use for optimizing the design of induction plasma reactors, to he applied to the vapor-phase synthesis of ultrafine silicon nitride powders.  相似文献   

17.
Lee  Szetsen  Tien  Yu-Chung  Hsu  Chin-Fa 《Plasmas and Polymers》1999,4(2-3):229-239
Recently, Kapton (polyimide) has been used in the reduction of dust particles in plasma etching chambers. However, it is found that there is a limit of lifetime for Kapton in trapping particles. Beyond this time limit, particle contamination becomes serious and even causes defect on wafers. In this study, two plasma etching recipes were used to test the particle/polymer trapping efficiency of Kapton. A Fourier Transform Infrared (FTIR) spectrometer was used to examine the functional groups change of the Kapton surface after plasma etching. The increase of IR absorption of CFx (x = 2, 3) indicates the growth of fluorocarbon polymer on the Kapton surface. The Kapton surface was damaged as indicated by the change of C=O, -NH2, and C - H IR intensities. IR Spectroscopic data show that Kapton has a very good particle/polymer reduction efficiency when using high-polymer recipe but not very efficient with oxygen-rich recipe. It has drawn our attention that when testing metal contamination of the processed wafers using chambers with Kapton coating, the concentration of aluminum was always high as compared to those without using Kapton. It can be ascribed to the plasma damage of Kapton, as supported by the surface chemical analysis with energy dispersion spectroscopy (EDS). Data collected from FTIR and EDS are correlated to interpret the mechanisms of plasma damage of Kapton.  相似文献   

18.
In order to obtain a stable plasma and improve the performance of the torch for atomic emission spectroscopy(AES), the structure of microwave plasma torch(MPT) was analyzed. The transmission and distribution characteristics of the electromagnetic field of the torch configuration with two or three concentric tubes, as well as the metal spacer between inner and intermediate tubes with different depths were simulated with electromagnetic simulation software and verified by experiments. The results indicate that the inner tube of MPT plays an important role in strengthening the electric field intensity at the opening end of the MPT and redistributing the electromagnetic field in the whole torch by forming a double resonance configuration, and contributes to enhancing the macroscopic stability and the self-sustainment of the plasma. The stability of the plasma is proved to be excellent when the metal spacer between the inner and intermediate tubes is located at a place 20—30 mm away from the top opening of the torch. A proper location of the spacer can also avoid the formation of a static filament plasma or a rotating plasma rooted from the outer wall of the inner tube. With the help of morphological analysis, the underlying reason why MPT possesses a great tolerance to wet aerosols and air introduction was clearly made, that is, the formation region of the plasma formed with MPT is apparently separated from the reaction zone of it.  相似文献   

19.
A systematic study of the gas-mixing pattern in an induction plasma reactor under atmospheric and low pressure conditions is reported. Different reactor configurations were investigated in which nitrogen is injected as an auxiliary gas either axially into an Ar/H2, discharge in the center of the induction coil region, or radially through multiple orifices, into the plasma jet at tire exit nozzle of the torch. Concentration mapping in the mixing zone was carried out, using a VG-Microniass-PC 300 D mass spectrometer at plasma power levels and reactor pressures, in the range of 13–24 k 6V and 35–93 kPa, respectively. Comparison of these results with cold-flow measurements underlined the substantial difference in the mixing pattern in each of these two cases. A considerably faster mixing of the gases is noted under cold flow conditions compared to that in the presence of the discharge. The results are discussed from the viewpoint of their use for optimum reactor design applied to tire vapor-phase synthesis of ultrafine ceramic powders, using induction plasma technology.  相似文献   

20.
Solid-Phase Synthesis of Calcium Carbide in a Plasma Reactor   总被引:1,自引:0,他引:1  
A laboratory-scale spout-fluid bed reactor with a dc plasma torch was used to study the solid-phase synthesis of calcium carbide. Calcium oxide powder with a mean particle size of 170 m was reacted with graphite powder (130 m). Argon was used to initiate the plasma and hydrogen gas was then added to increase power and raise the plasma jet enthalpy. Experimental results showed that the reaction took place in the vicinity of the plasma jet and that conversion to calcium carbide increased linearly with reaction time. The rate of conversion increased exponentially with plasma jet temperature, indicating that chemical reaction was the controlling mechanism. Microscopic analysis of the solid product showed that calcium carbide was formed around both reactants, and that the reaction followed a shrinking core model. Although melting and agglomeration of partially reacted particles occurred at high temperature, resulting in instability of the bed and impeding the reaction progress, high conversions are expected in a continuous process with optimized reactor design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号