首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method to determine carbocysteine in human plasma was developed and fully validated. After methanol-induced protein precipitation of the plasma samples, carbocysteine was subjected to LC/MS/MS analysis using electrospray ionization (ESI). The MS system was operated in the selected ion monitoring (SRM) mode. Chromatographic separation was performed on a Hypurity C18 column (i.d. 2.1 mm x 50 mm, particle size 5 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.1-20 microg/mL for carbocysteine. The lower limit of quantification (LLOQ) of the method was 0.1 microg/mL for carbocysteine. The intra- and inter-day precision was less than 7% for all quality control samples at concentrations of 0.5, 2.0, and 10.0 microg/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for carbocysteine compared with methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method has been successfully used to a bioequivalence study of two tablet formulations of carbocysteine in healthy volunteers.  相似文献   

2.
A rapid method has been developed for the quantification of the prototypic cyclotide kalata B1 in water and plasma utilizing matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry. The unusual structure of the cyclotides means that they do not ionise as readily as linear peptides and as a result of their low ionisation efficiency, traditional LC/MS analyses were not able to reach the levels of detection required for the quantification of cyclotides in plasma for pharmacokinetic studies. MALDI-TOF-MS analysis showed linearity (R2 > 0.99) in the concentration range 0.05-10 microg/mL with a limit of detection of 0.05 microg/mL (9 fmol) in plasma. This paper highlights the applicability of MALDI-TOF mass spectrometry for the rapid and sensitive quantification of peptides in biological samples without the need for extensive extraction procedures.  相似文献   

3.
A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of lovastatin in human plasma. With simvastatin as internal standard, sample pretreatment involved one-step extraction with n-hexane-methylene dichloride-isopropanol (20:10:1, v/v/v) of 0.5 mL plasma. Chromatographic separation was carried out on an Acquity UPLC BEH C(18) column with mobile phase consisting of acetonitrile-water (containing 5 mmol/L ammonium acetate; 85:15, v/v) at a flow-rate of 0.35 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization source with positive mode. The analysis time was shorter than 1.7 min per sample. The standard curve was linear (r2>or=0.99) over the concentration range 0.025-50.0 ng/mL with a lower limit of quantification of 0.025 ng/mL. The intra- and inter-day precision values were below 11% and the accuracy (relative error) was within 6.0% at three quality control levels. This is the first method of MS with MRM coupled to UPLC for the determination of lovastatin, which showed great advantages of high sensitivity, selectivity and high sample throughput. It was fully validated and successfully applied to the pharmacokinetic study of lovastatin tablets in healthy Chinese male volunteers after oral administration.  相似文献   

4.
A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of pramipexole in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 212/152 for pramipexole and m/z 409/228 for the IS. The method exhibited a linear dynamic range of 200-8000 pg/mL for pramipexole in human plasma. The lower limit of quantification was 200 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 3.5 min for each sample made it possible to analyze more than 200 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

5.
A sensitive high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (MS/MS) method was developed and validated for the simultaneous quantification of trandolapril and its metabolite trandolaprilat in human plasma using ramipril as an internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M-H]- ions, m/z 429/168 for trandolapril, m/z 401/168 for trandolaprilat and m/z 415/166 for the internal standard. The method exhibited a linear dynamic range of 20-10,000 pg/mL for both trandolapril and trandolaprilat in human plasma. The lower limit of quantification was 20 pg/mL for both trandolapril and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

6.
A rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of fexofenadine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 1-500 ng/mL for fexofenadine in human plasma. The lower limit of quantification was 1 ng/mL with a relative standard deviation of less than 5% for fexofenadine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

7.
A high-throughput liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) assay using automated sample preparation has been developed for the determination of valproic acid (VPA) in mouse plasma. A liquid-handling system was programmed to prepare calibration standard solutions in plasma, as well as quality controls and clinical samples. Plasma protein precipitation was performed on a 96-well plate, and the collected supernatant was directly injected into a reversed-phase LC/ESI-MS/MS system in the negative ionization mode. The calibration curve for VPA was linear over a dynamic range of 0.15-100 microg/mL. The limit of detection was 75 ng/mL and the lower limit of quantitation was 150 ng/mL. Intra- and inter-day validation assays of the semi-automated plasma analysis showed satisfactory accuracy and precision.  相似文献   

8.
A simple, sensitive and rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of pseudoephedrine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple-reaction monitoring mode using the respective [M + H](+) ions, m/z 166/148 for pseuoephedrine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 2-1000 ng/mL pseudoephedrine in human plasma. The lower limit of quantification was 2 ng/mL with a relative standard deviation of less than 9% for pseudoephedrine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

9.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of sitagliptin, a DPP-4 inhibitor, in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 408-235 for sitagliptin and m/z 310-148 for the internal standard. The assay exhibited a linear dynamic range of 0.1-250 ng/mL for sitagliptin in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

10.
A sensitive and selective high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of amisulpride in 100 microL of human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M + H)(+) ions, m/z 370-242 for amisulpride and m/z 341-112 for the internal standard. The assay exhibited a linear dynamic range with a lower range of 0.1-100 ng/mL and a higher range of 1-500 ng/mL of amisulpride in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for both linearity ranges. A run time of 2.0 min for each sample made it possible to analyze more than 275 human plasma samples per day. The validated method has been successfully used to analyze plasma samples for application in pharmacokinetic studies.  相似文献   

11.
A rapid, simple and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed for the determination of an antiepileptic drug, lacosamide, in rat plasma. The method involves the addition of acetonitrile and internal standard solution to plasma samples, followed by centrifugation. An aliquot of the supernatant was diluted with water and directly injected into the LC/MS/MS system. The separations were performed on column packed with octadecylsilica (5 µm, 2.0 × 50 mm) with 0.1% formic acid and acetonitrile as mobile phase, and the detection was performed on tandem mass spectrometry by the multiple‐reaction monitoring via an electrospray ionization source. The standard curve was linear over the concentration range from 0.3 to 1000 ng/mL. The lower limit of quantification was 0.3 ng/mL using 50 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were found to be less than 11.7 and 8.8%, respectively. The developed analytical method was successfully applied to the pharmacokinetic study of lacosamide in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay was developed and validated to determine valproic acid in human plasma. The method involved a solid-phase extraction of valproic acid and betamethasone valerate, an internal standard, from plasma and detection using an LC-MS/MS system with electrospray ionization source in negative ion mode. Separation was achieved within 3 min on a non-porous silica column with mobile phase containing ammonium acetate and methanol. Multiple reaction monitoring was utilized for detection monitoring at 142.89-142.89 for valproic acid and 457.21-457.21 for the internal standard. The calibration curve for valproic acid was linear over the range of 0.5-150 microg/mL. The limit of detection was 0.17 microg/mL and the lower limit of quantification was 0.5 microg/mL, when 0.2 mL plasma was used for extraction. The percentage coefficient of validation for accuracy and precision (inter- and intra-day) for this method was less than 9.5% with recovery ranging from 82.3 to 86.9% for valproic acid.  相似文献   

13.
A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of zidovudine in rat plasma. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 268/127 for zidovudine and m/z 230/112 for the internal standard. The method exhibited a linear dynamic range of 5-500 ng/mL for zidovudine in rat plasma. The lower limit of quantification was 5 ng/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 1.5 min for each sample made it possible to analyze more than 400 plasma samples per day. The validated method was applied for pharmacokinetic studies of the novel drug delivery systems of zidovudine in rats.  相似文献   

14.
Clenbuterol (CBL) is a potent beta(2)-adrenoceptor agonist used for the management of respiratory disorders in the horse. The detection and quantification of CBL can pose a problem due to its potency, the relatively low dose administered to the horse, its slow clearance and low plasma concentrations. Thus, a sensitive method for the quantification and confirmation of CBL in racehorses is required to study its distribution and elimination. A sensitive and fast method was developed for quantification and confirmation of the presence of CBL in equine plasma, urine and tissue samples. The method involved liquid-liquid extraction (LLE), separation by liquid chromatography (LC) on a short cyano column, and pseudo multiple reaction monitoring (pseudo-MRM) by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS). At very low concentrations (picograms of CBL/mL), LLE produced better extraction efficiency and calibration curves than solid-phase extraction (SPE). The operating parameters for electrospray QTOF and yield of the product ion in MRM were optimized to enhance sensitivity for the detection and quantification of CBL. The quantification range of the method was 0.013-10 ng of CBL/mL plasma, 0.05-20 ng/0.1 mL of urine, and 0.025-10 ng/g tissue. The detection limit of the method was 13 pg/mL of plasma, 50 pg/0.1 mL of urine, and 25 pg/g of tissue. The method was successfully applied to the analysis of CBL in plasma, urine and various tissue samples, and in pharmacokinetic (PK) studies of CBL in the horse. CBL was quantified for 96 h in plasma and 288 h in urine post-administration of CLB (1.6 micro g/kg, 2 x daily x 7 days). This method is useful for the detection and quantification of very low concentrations of CBL in urine, plasma and tissue samples.  相似文献   

15.
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) was developed. This assay represents the first LC‐MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3‐atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/mL and 10 nm for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3–900 ng/mL and 10 nm to 10 µm for human plasma and cellular samples, respectively (r2 > 0.999). The intra‐ and inter‐day assay accuracy and precision were evaluated using quality control samples at three different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect and recovery were also successfully demonstrated. The present assay is superior to previously published LC‐MS and LC‐MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Plasma volume expanders are used in sports in order to control haematological parameters and/or to mask erythropoietin (EPO) misuse. A reliable method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for doping control purposes, enabling the identification and quantification of the plasma volume expander dextran in human urine. The dextran polymer was enzymatically hydrolysed by alpha-1,6-glucosidase (dextranase) followed by acetylation of the generated isomaltose subunits, allowing the chromatographic separation of different disaccharides, such as lactose, saccharose and isomaltose, as well as the identification and quantification of the analyte in human urine. The method was used to determine the basal concentration of isomaltose resulting from the enzymatic hydrolysis of polymeric 1,6-linked glucose in 238 routine doping control samples. In addition the concentration of dextran measured as isomaltose was estimated in seven urine specimens obtained from patients treated with dextran. Calibration curves for dextran were linear and reproducible. The inter- and intra-assay coefficients of variation for dextran ranged from 4.9 to 7.3% at three concentration levels between 53 and 1186 microg/mL. Recovery ranged from 97 to 112% (mean 106.9%). The assay limit of detection was 3.8 microg/mL and the lower limit of quantification was 12.5 microg/mL. In 96% of the investigated doping control samples, the concentrations of isomaltose were below the LLOQ of 12.5 microg/mL. Even the highest concentrations were approximately 100-300-fold lower than concentrations found in urine samples of patients after intravenous application of dextran. The presented results demonstrate the capability and reliability of the developed LC-MS/MS method for the identification and quantification of dextran in human urine and can be regarded as a method revealing the misuse of dextran in sports.  相似文献   

17.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of clonidine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 230 to 44 for clonidine and m/z 254 to 44 for the internal standard. The assay exhibited a linear dynamic range of 10-2000 pg/mL for clonidine in human plasma. The lower limit of quantification was 10 pg/mL with a relative standard deviation of less than 6.8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of donepezil in human plasma samples. Diphenhydramine was used as the internal standard. The collision-induced transition m/z 380 --> 91 was used to analyze donepezil in selected reaction monitoring mode. The signal intensity of the m/z 380 --> 91 transition was found to relate linearly with donepezil concentrations in plasma from 0.1-20.0 ng/mL. The lower limit of quantification of the LC/MS/MS method was 0.1 ng/mL. The intra- and inter-day precisions were below 10.2% and the accuracy was between -2.3% and +2.8%. The validated LC/MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 5 mg donepezil hydrochloride. The non-compartmental pharmacokinetic model was used to fit the donepezil plasma concentration-time curve. Maximum plasma concentration was 12.3 +/- 2.73 ng/mL which occurred at 3.50 +/- 1.61 h post-dosing. The apparent elimination half-life and the area under the curve were, respectively, 60.86 +/- 12.05 h and 609.3 +/- 122.2 ng . h/mL. LC/MS/MS is a rapid, sensitive and specific method for determining donepezil in human plasma samples.  相似文献   

19.
A simultaneous, selective, sensitive and rapid liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of gefitinib, erlotinib and afatinib in 250 μL samples of human blood plasma. Diluted plasma samples were extracted using a liquid‐phase extraction procedure with tert‐butyl methyl ether. The three drugs were separated by high‐performance liquid chromatography using a C18 column and an isocratic mobile phase running at a flow rate of 0.2 mL/min for 5 min. The drugs were detected using a tandem mass spectrometer with electrospray ionization using imatinib as an internal standard. Calibration curves were generated over the linear concentration range of 0.05–100 nm in plasma with a lower limit of quantification of 0.01 or 0.05 nm for all compounds. Finally, the validated method was applied to a clinical pharmacokinetic study in patients with nonsmall‐cell lung cancer (NSCLC) following the oral administration of afatinib. These results indicate that this method is suitable for assessing the risks and benefits of chemotherapy in patients with NSCLC and is useful for therapeutic drug monitoring for NSCLC treatment. As far as we know, this is the first report on LC‐MS/MS method for the simultaneous quantification of NSCLC tyrosine kinase inhibitor plasma concentrations including afatinib. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Two methods are presented for the determination of 'respectively' the plasma protein unbound and total concentration of acyclovir in horse plasma and body fluids: first, a liquid-liquid extraction was performed on plasma, combined with HPLC-fluorescence detection for the total plasma concentration; second a more sensitive method using high-performance liquid chromatography combined with heated electrospray ionization tandem mass spectrometry (LC-HESI-MS/MS) was described for plasma and for body fluids analysis. To obtain the unbound concentration of acyclovir in plasma, a simple deproteinization step using a Microcon filter was performed. Ganciclovir was used as an internal standard. Analysis was carried out on an Inertsil 5 ODS-3 column for the HPLC-fluorescence method. For the LC-HESI-MS/MS method a PLRP-S column was used. The limit of quantification (LOQ) for the total concentration was set at 50 and 2 ng mL(-1) for the HPLC-fluorescence method and the LC-HESI-MS/MS method, respectively. The limit of quantification for the unbound concentration was set at 5 ng mL(-1) and at 2 ng mL(-1) for body fluids. The methods were successfully used to perform pharmacokinetic and clinical studies in horses after intravenous and oral dosage of acyclovir and its prodrug valacyclovir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号