首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The copper coordination chemistry of two phthalazine-based ligands of differing steric bulk was investigated. A family of dinuclear complexes were prepared from reactions of [Cu(2)(bdptz)(MeCN)(2)](OTf)(2), 1(OTf)(2), where bdptz = 1,4-bis(2,2'-dipyridylmethyl)phthalazine. Treatment of 1(OTf)(2) with NaO(2)CCH(3) afforded the class I mixed-valent compound [Cu(2)(bdptz)(2)](OTf)(3), 2(OTf)(3), by disproportionation of Cu(I). Compound 2(OTf)(3) displays an electron paramagnetic resonance spectrum, with g( parallel ) = 2.25 (A( parallel ) = 169 G) and g( perpendicular ) = 2.06, and exhibits a reversible redox wave at -452 mV versus Cp(2)Fe(+)/Cp(2)Fe. The complex [Cu(2)(bdptz)(micro-OH)(MeCN)(2)](OTf)(3), 3(OTf)(3), was prepared by chemical oxidation of 1 with AgOTf, and exposure of 1 to dioxygen afforded [Cu(2)(bdptz)(micro-OH)(2)](2)(OTs)(4), 4(OTs)(4), which can also be obtained directly from [Cu(H(2)O)(6)](OTs)(2). In compound [Cu(2)(bdptz)(micro-vpy)](OTf)(2), 5(OTf)(2), where vpy = 2-vinylpyridine, the vpy ligand bridges the two Cu(I) centers by using both its pyridine nitrogen and the olefin as donor functionalities. The sterically hindered compounds [Cu(2)(Ph(4)bdptz)(MeCN)(2)](OTf)(2), 6(OTf)(2), and [Cu(2)(Ph(4)bdptz)(micro-O(2)CCH(3))](OTf), 7(OTf), were also synthesized, where Ph(4)bdptz = 1,4-bis[bis(6-phenyl-2-pyridyl)methyl]phthalazine. Complexes 1-7 were characterized structurally by X-ray crystallography. In 6 and 7, the four phenyl rings form a hydrophobic pocket that houses the acetonitrile and acetate ligands. Complex 6 displays two reversible redox waves with E(1/2) values of +41 and +516 mV versus Cp(2)Fe(+)/Cp(2)Fe. Analysis of oxygenated solutions of 6 by electrospray ionization mass spectrometry reveals probable aromatic hydroxylation of the Ph(4)bdptz ligand. The different chemical and electrochemical behavior of 1 versus 6 highlights the influence of a hydrophobic binding pocket on the stability and reactivity of the dicopper(I) centers.  相似文献   

2.
Treatment of CuF(2) with 2 equiv of 3{5}-[pyrid-2-yl]pyrazole (Hpz(Py)), 3{5}-phenylpyrazole (Hpz(Ph)) or 3{5}-[4-fluorophenyl]pyrazole (Hpz(PhF)) in MeOH, followed by evaporation to dryness and recrystallisation of the solid residues, allows solvated crystals of [{Cu(micro-pz(Py))(pz(Py))}(2)] (1), [{Cu(micro-pz(Ph))(2)}(4)] (2) and [Cu(4)F(2)(micro(4)-F)(micro-pz(PhF))(5)(Hpz(PhF))(4)] (3) to be isolated in moderate-to-good yields. Similar reactions of these three pyrazoles with Cu(OH)(2) in refluxing MeOH respectively afford 1, 2 and [Cu(pz(PhF))(2)(Hpz(PhF))(2)] (4) in ca. 10% yield. Crystalline 1 x 1/2H(2)O x 2CHCl(3) contains two independent dinuclear molecules with a puckered di-(1,2-pyrazolido) bridge motif, linked by a bridging, hydrogen-bonding water molecule. Compound 2 x 1/2C(5)H(12), containing cyclic, square tetranuclear complex molecules, is the first homoleptic divalent metal pyrazolide to have a discrete molecular rather than polymeric structure, for a metal other than Pd or Pt. The two independent complex molecules in 3 x 3/4CH(2)Cl(2) x Hpz(PhF) contain a unique tetrahedral [Cu(4)(micro(4)-F)](7+) core, three of whose edges are spanned by bridging pyrazolido groups. Magnetic data show that the copper centres in 1 and 3 are antiferromagnetically coupled, but that dried bulk samples of 2 do not retain their molecular structure.  相似文献   

3.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

4.
2-Benzoylpyridine thiosemicarbazone {R(1)R(2)C(2)=N(2)·N(3)H-C(1)(=S)-N(4)H(2), R(1) = py-N(1), R(2) = Ph; Hbpytsc} with copper(I) iodide in acetonitrile-dichloromethane mixture has formed stable Cu(II)-I bonds in a dark green Cu(II) iodo-bridged dimer, [Cu(2)(II)(μ-I)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 1. Copper(I) bromide also formed similar Cu(II)-Br bonds in a dark green Cu(II) bromo-bridged dimer, [Cu(2)(II)(μ-Br)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 3. The formation of dimers 1 and 3 appears to be due to a proton coupled electron transfer (PCET) process wherein copper(I) loses an electron to form copper(II), and this is accompanied by a loss of -N(3)H proton of Hbpytsc ligand resulting in the formation of anionic bpytsc(-). When copper(I) iodide was reacted with triphenylphosphine (PPh(3)) in acetonitrile followed by the addition of 2-benzoylpyridine thiosemicarbazone in dichloromethane (Cu?:?PPh(3)?:?Hbpytsc in the molar ratio 1:1:1), both Cu(II) dimer 1 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)I(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 2 were formed. Copper(I) bromide with PPh(3) and Hbpytsc also formed Cu(II) dimer 3 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)Br(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 4. While complexes 2 and 4 exist as sulfur-bridged Cu(I) dimers, 1 and 3 are halogen-bridged. The central Cu(2)S(2) cores of 2 and 4 as well as Cu(2)X(2) of 1 (X = I) and 3 (X = Br) are parallelograms. One set of Cu(II)-I and Cu(II)-Br bonds are short, while the second set is very long {1, Cu-I, 2.565(1), 3.313(1) ?; 3, Cu-Br, 2.391(1), 3.111(1) ?}. The Cu···Cu separations are long in all four complexes {1, 4.126(1); 2, 3.857(1); 3, 3.227(1); 4, 3.285(1) ?}, more than twice the van der Waals radius of a Cu atom, 2.80 ?. The pyridyl group appears to be necessary for stabilizing the Cu(II)-I bond, as this group can accept π-electrons from the metal.  相似文献   

5.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

6.
A trinuclear rhenium sulfide cluster complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(3)Cl(6)(PMe(2)Ph)(3)], synthesized from Re(3)S(7)Cl(7), dimethylphenylphosphine, and [(Ph(3)P)(2)N]Cl is readily converted to a bridging SO(2) complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(2)(mu-SO(2))Cl(6)(PMe(2)Ph)(3)], by reaction with O(2). The oxygen atoms on the SO(2) ligand react with phosphines or phosphites to form phosphine oxides or phosphates, and the original cluster complex is recovered. The reaction course has been monitored by (31)P NMR as well as by UV-vis spectroscopy. The catalytic oxygenation of PMePh(2) in the presence of the SO(2) complex shows that turnovers are 8 per hour at 23 degrees C in CDCl(3). The X-ray structures of the cluster complexes are described.  相似文献   

7.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

8.
Cu(2)SnS(3) nanocrystals with metastable zincblende and wurtzite structures have been successfully synthesized for the first time. Alloyed (ZnS)(x)(Cu(2)SnS(3))(1-x) and (CuInS(2))(x)(Cu(2)SnS(3))(1-x) nanocrystals with arbitrary composition (0 ≤x≤ 1) and ultra-broad tunable band gaps (3.63 to 0.94 eV) were obtained.  相似文献   

9.
Reactions of copper(I) halides with a series of thiosemicarbazone ligands (Htsc) in the presence of triphenylphosphine (Ph(3)P) in acetonitrile have yielded three types of complexes: (i) monomers, [CuX(eta1-S-Htsc)(Ph3P)2] [X, Htsc = I (1), Br (2), benzaldehyde thiosemicarbazone (Hbtsc); I (5), Br (6), Cl (7), pyridine-2-carbaldehyde thiosemicarbazone (Hpytsc)], (ii) halogen-bridged dimers, [Cu2(mu2-X)2(eta1-S-Htsc)2(Ph3P)2] [X, Htsc = Br (3), Hbtsc; I (8), furan-2-carbaldehyde thiosemicarbazone (Hftsc); I (11), thiophene-2-carbaldehyde thiosemicarbazone (Httsc)], and (iii) sulfur-bridged dimers, [Cu2X2(mu2-S-Htsc)2(Ph3P)2] [X, Htsc = Cl (4), Hbtsc; Br (9), Cl (10), pyrrole-2-carbaldehyde thiosemicarbazone (Hptsc); Br (12), Httsc]. All of these complexes have been characterized with the help of elemental analysis, IR, 1H, 13C, or 31P NMR spectroscopy, and X-ray crystallography (1-12). In all of the complexes, thiosemicarbazones are acting as neutral S-donor ligands in eta()S or mu2-S bonding modes. The Cu...Cu separations in the Cu(mu2-X)2Cu and Cu(mu2-S)2Cu cores lie in the ranges 2.981(1)-3.2247(6) and 2.813(1)-3.2329(8) Angstroms, respectively. The geometry around each Cu center in monomers and dimers may be treated as distorted tetrahedral. Ab initio density functional theory calculations on model monomeric and dimeric complexes of the simplest thiosemicarbazone [H2C=N-NH-C(S)-NH2, Htsc] have revealed that monomers and halogen-bridged dimers have similar stability and that sulfur-bridged dimers are stable only when halogen atoms are engaged in hydrogen bonding with the solvent of crystallization or H2O molecules.  相似文献   

10.
The reaction of (ArN=)MoCl(2)(PMe(3))(3) (Ar = 2,6-diisopropylphenyl) with L-Selectride gives the hydrido-chloride complex (ArN=)Mo(H)(Cl)(PMe(3))(3) (2). Complex 2 was found to catalyze the hydrosilylation of carbonyls and nitriles as well as the dehydrogenative silylation of alcohols and water. Compound 2 does not show any productive reaction with PhSiH(3); however, a slow H/D exchange and formation of (ArN=)Mo(D)(Cl)(PMe(3))(3) (2(D)) was observed upon addition of PhSiD(3). Reactivity of 2 toward organic substrates was studied. Stoichiometric reactions of 2 with benzaldehyde and cyclohexanone start with dissociation of the trans-to-hydride PMe(3) ligand followed by coordination and insertion of carbonyls into the Mo-H bond to form alkoxy derivatives (ArN=)Mo(Cl)(OR)(PMe(2))L(2) (3: R = OCH(2)Ph, L(2) = 2 PMe(3); 5: R = OCH(2)Ph, L(2) = η(2)-PhC(O)H; 6: R = OCy, L(2) = 2 PMe(3)). The latter species reacts with PhSiH(3) to furnish the corresponding silyl ethers and to recover the hydride 2. An analogous mechanism was suggested for the dehydrogenative ethanolysis with PhSiH(3), with the key intermediate being the ethoxy complex (ArN=)Mo(Cl)(OEt)(PMe(3))(3) (7). In the case of hydrosilylation of acetophenone, a D-labeling experiment, i.e., a reaction of 2 with acetophenone and PhSiD(3) in the 1:1:1 ratio, suggests an alternative mechanism that does not involve the intermediacy of an alkoxy complex. In this particular case, the reaction presumably proceeds via Lewis acid catalysis. Similar to the case of benzaldehyde, treatment of 2 with styrene gives trans-(ArN=)Mo(H)(η(2)-CH(2)═CHPh)(PMe(3))(2) (8). Complex 8 slowly decomposes via the release of ethylbenzene, indicating only a slow insertion of styrene ligand into the Mo-H bond of 8.  相似文献   

11.
The reactions between diphosphino-alkynyl gold complexes (PhC2Au)PPh2(C6H4)(n)PPh2(AuC2Ph) (n = 1, 2, 3) with Cu(+) lead to formation of the heterometallic aggregates, the composition of which may be described by a general formula [{Au(x)Cu(y)(C2Ph)2x}Au3{PPh2(C6H4)(n)PPh2}3](3+(y-x)) (n = 1, 2, 3; x = (n + 1)(n + 2)/2; y = n(n + 1)). These compounds display very similar structural patterns and consist of the [Au(x)Cu(y)(C2Ph)2x](y-x) alkynyl clusters "wrapped" in the [Au3(diphosphine)3](3+) triangles. The complex for n = 1 was characterized crystallographically and spectrally, the larger ones (n = 2, 3) were investigated in detail by NMR spectroscopy. Their luminescence behavior has been studied, and a remarkably efficient emission with a maximum quantum yield of 0.92 (n = 1) has been detected. Photophysical experiments demonstrate that an increase of the size of the aggregates leads to a decrease in photostability and photoefficiency. Computational studies have been performed to provide additional insight into the structural and electronic properties of these supramolecular complexes. The theoretical results obtained are in good agreement with the experimental data, supporting the proposed structural motif. These studies also suggest that the observed efficient long-wavelength luminescence originates from metal-centered transitions within the heterometallic Au-Cu core.  相似文献   

12.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

13.
14.
The facile syntheses and the structures of five new Cu(I) alkynyl clusters, [Cu(12)(hfac)(8)(C[triple chemical bond]CnPr)(4)(thf)(6)]xTHF (1), [Cu(12)(hfac)(8)(C[triple chemical bond]CtBu)(4)] (2), [Cu(12)(hfac)(8)(C[triple chemical bond]CSiMe(3))(4)] (3), [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)]/[Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(3)(C[triple chemical bond]CnPr)(diethyl ether)] (4) and [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)] (5) are reported, in which hfacH=1,1,1,5,5,5-hexafluoropentan-2,4-dione. The first independent molecule found in the crystals of 4 (4 a) proved to be chemically identical to 5. The Cu(10) and Cu(12) cores in these clusters are based on a central "square" Cu(4)C(4) unit. Whilst the connectivities of the Cu(10) or Cu(12) units remain identical the geometries vary considerably and depend on the bulk of the alkynyl group, weak coordination of ether molecules to copper atoms in the core and CuO intramolecular contacts formed between Cu-hfac units on the periphery of the cluster. Similar intermolecular contacts and interlocking of Cu-hfac units are formed in the simple model complex [Cu(2)(hfac)(2)(HC[triple chemical bond]CtBu)] (6). When linear alkynes, C(n)H(2n+1)C[triple chemical bond]CH, are used in the synthesis and non-coordinating solvents are used in the workup, further association of the Cu(4)C(4) cores occurs and clusters with more than eighteen copper atoms are isolated.  相似文献   

15.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

16.
Thiophene-2-thiocarboxylate complexes of Cu(I), [(Ph(3)P)(2)Cu(SCOth)] (1) and H[(Ph(3)P)(2)Cu(SCOth)(2)] (2) (where th = thiophene) were synthesized and characterized structurally by X-ray crystallography. Electronic absorption and emission spectral properties of the two compounds have been studied. Cu(II) complexes, [(TMEDA)Cu(SCOth)(2)] (3b) and [(Phen)Cu(SCOth)(2)] (4a) (where TMEDA = tetramethylethylenediamine; Phen = 1,10-phenanthroline) were prepared and characterized by spectroscopic measurements. 3b and 4a underwent desulfurization under ambient conditions readily yielding the corresponding carboxylate complexes [(TMEDA)Cu(O(2)Cth)(2)] (3a) and [(Phen)Cu(O(2)Cth)(2)·H(2)O] (4b). 3a and 4b have been characterized crystallographically.  相似文献   

17.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

18.
The new ligand Ph(2)(O)POCH(2)C(pz)(3) (pz = pyrazolyl ring), prepared from the reaction of HOCH(2)C(pz)(3) and Ph(2)P(O)Cl in the presence of base, reacts with either AgBF(4) or Fe(BF(4))(2).6H(2)O in a 2/1 molar ratio to yield {[Ph(2)(O)POCH(2)C(pz)(3)](2)Ag}(BF(4)) () and {[Ph(2)(O)POCH(2)C(pz)(3)](2)Fe}(BF(4))(2) (), respectively. In the structure of , the silver is in an unusual planar geometry with each of the ligands in a kappa(2)-kappa(0) coordination mode. Slow evaporation of a thf solution of yields crystalline [Ph(2)(O)POCH(2)C(pz)(3)Ag](2)(thf)(2)}(BF(4))(2) (). In each cationic unit of , the two Ph(2)(O)POCH(2)C(pz)(3) ligands coordinate to the same two silver(i) centers in a kappa(2)-kappa(1) bonding mode, with a silver atom separation of 3.36 A. The supramolecular structure of both and is dominated by a pair of cooperative hydrogen bonding interactions between the Ph(2)P(O) secondary tecton and a hydrogen atom from a methylene group situated on a neighboring building block, which arranges the cations in chains. The reaction of HC(pz)(3) and AgO(3)SCF(3) (AgOTf) yields {[HC(pz)(3)](2)Ag(2)}(OTf)(2) (). The cationic unit in has a structure very similar to that of , but with a much shorter distance between the silver atoms at 2.86 A. The supramolecular structure of is dominated by an unusual pyrazolyl embrace interaction where the acceptor ring in the C-Hpi interaction is the pyrazolyl ring kappa(1)-bonded to silver in the adjacent dimeric unit rather than the other ring in a kappa(2)-bonded Cpz(2) unit. This interaction arranges the cations in chains which are further organized into sheets by the triflate anions that link the chains via combined AgO/CHO interactions. The iron in is octahedral with each tris(pyrazolyl)methane unit in the kappa(3)-tripodal coordination mode. The supramolecular structure is sheets formed by hydrogen bonding between the Ph(2)P(O) oxygen and a meta-position hydrogen on one of the diphenylphosphine rings from an adjacent cation.  相似文献   

19.
N-(2-Pyridylmethyl)pyridine-2-methylketimine (L1) was synthesized from equimolar quantities of (2-pyridyl)methylamine and 2-acetylpyridine. Methanolic solution of L1 reacted readily with Cu(NO3)2.3H2O in air, affording green solid of composition {[Cu(L2)(OH)(NO3)][Cu(L2)(NO3)2]}.2H2O, where L2 is 4'-(2-pyridyl)-2,2':6',2' '-terpyridine. Oxidation of the active methylene group of L1 to an imide and then condensation with 2-acetylpyridine involving a C-C bond-forming reaction, mediated by a Cu2+ ion, are the essential steps involved in the conversion of L1 to L2. L2 is isolated by extrusion of Cu2+ with EDTA(2-). The copper center in [Cu(L2)(OH)(NO3)] has a mer-N3O3 environment, and that in [Cu(L2)(NO3)2] has a distorted trigonal-bipyramidal geometry. Two H2O molecules held by C-H...O interactions are present in the predominantly hydrophobic channels of approximate cavity dimension 7.60 x 6.50 A created by aromatic rings through pi-pi interactions.  相似文献   

20.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号