首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The pH-induced swelling of poly(2-vinylpyridine) microgel particles was studied using dynamic light scattering. The increase in particle diameter with decreasing pH was modeled using a well-established thermodynamic model for microgel swelling. The Maxwell construction was applied to extend the model and yield a prediction for a pH-responsive microgel across the entire pH range. The model predicts a first order phase transition for polymer-solvent combinations with a Flory interaction parameter, χ, greater than a critical value χ(c). The modified theory compared favorably to the dynamic light scattering data for the hydrodynamic diameter of microgel particles based on 2-vinylpyridine at different pH values. In particular, the swelling transition is both predicted theoretically and observed experimentally to occur at a pH lower than the pK(a) of the polymer.  相似文献   

2.
The behavior of dilute solutions of cardo polybenzimidazoles based on 3,3′4,4′-tetraaminodiphenyl ether; 3,3′,4,4′-tetraaminodiphenyl sulfone; and 4,4′-diphenylphthalidedicarboxylic acid in solvents of various natures has been studied by the methods of dynamic light scattering, sedimentation, and viscometry. All of the polymers have been found to contain a microgel fraction. For each fraction, the diffusion coefficient and the particle size are determined. The experimental characteristics of macromolecules correspond to the conformational rigidity calculated by a computer simulation procedure.  相似文献   

3.
Monodispersed poly(N‐isopropylacrylamide) (PNIPAM) nanoparticles, with hydrodynamic radius less than 50 nm at room temperature, have been synthesized in the presence of a large amount of emulsifiers. These microgel particles undergo a swollen–collapsed volume transition in an aqueous solution when the temperature is raised to around 34 °C. The volume transition and structure changes of the microgel particles as a function of temperature are probed using laser light scattering and small angle neutron scattering (SANS) with the objective of determining the small particle internal structure and particle–particle interactions. Apart from random fluctuations in the crosslinker density below the transition temperature, we find that, within the resolution of the experiments, these particles have a uniform radial crosslinker density on either side of the transition temperature. This result is in contrast to previous reports on the heterogeneous structures of larger PNIPAM microgel particles, but in good agreement with recent reports based on computer simulations of smaller microgels. The particle interactions change across the transition temperature. At temperatures below the transition, the interactions are described by a repulsive interaction far larger than that expected for a hard sphere contact potential. Above the volume transition temperature, the potential is best described by a small, attractive interaction. Comparison of the osmotic second virial coefficient from static laser light scattering at low concentrations with similar values determined from SANS at 250‐time greater concentration suggests a strong concentration dependence of the interaction potential. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 849–860, 2005  相似文献   

4.
The evanescent wave light scattering technique, which is produced by a fusion of the evanescent wave technique and light scattering technique, is a very powerful and useful tool for investigation of colloidal particles and polymers near the surface and interfaces. We have developed two kinds of evanescent wave light scattering apparatuses. One is the evanescent wave dynamic light scattering (EVDLS) technique and the other is the evanescent wave light scattering microscope (EVLSM). By EVDLS, the diffusion behavior of a colloidal particle near the interface can be extracted quantitatively as a function of the distance from the interface. The diffusion coefficient was smaller than those for particles in bulk, reflecting electrostatic and hydrodynamic interactions. By EVLSM, the interaction potential profile between a colloidal particle and the surface in dispersion can be evaluated directly. EVLSM will play an important role in colloidal interaction studies, especially at a low ionic strength. It is also pointed out that a particle dynamics study is also possible by the EVLSM technique. A new field will be developed in colloid science and polymer science by application of the evanescent wave light scattering technique, i. e. a fusion of the evanescent light and a light scattering techniques.  相似文献   

5.
In this work, the collective diffusion coefficient of highly charged colloidal particles in dilute dispersions has been measured by means of dynamic light scattering. The possibility of obtaining valuable information about the particle charge from these data is looked into with the help of electrophoresis experiments. Our results suggest that this is possible in the case of slight or moderately interacting particles as long as experimental data are properly treated. For highly interacting colloids, however, such information could not be so reliable, presumably due to certain shortcomings of the experimental technique at low angle. The role of charge renormalization is also discussed in this work.  相似文献   

6.
We perform static light scattering experiments on a dilute suspension of microgel particles and model the resultant form factors Pq by assuming an exponentially decaying dielectric permittivity. The result is that Pq is a Lorentzian function of the scattering wavevector q for length scales greater than the particle size; the width approximately corresponding to twice the particle radius. This simple model reasonably accounts for scattered light from both swollen and shrunken microgel phases.  相似文献   

7.
聚(N-异丙基丙烯酰胺)水凝胶微球体积相变的研究   总被引:4,自引:0,他引:4  
高均  吴奇 《高分子学报》1997,(3):324-330
窄分散的聚(N 异丙基丙烯酰胺)水凝胶微球用乳液聚合方法制备,并用动态和静态光散射对其体积相变进行了研究.与水中聚(N 异丙基丙烯酰胺)线性单链比较,水中凝胶微球的体积相变温度较高,对温度的响应比较平缓.相变是连续的,有别于大块凝胶非连续的体积变化.在体积相变过程中,凝胶微球始终是密度均一的热力学稳定球体.从相变过程网络密度的变化可以确定,绝大部分的水在收缩过程被排了出来,但在紧缩的凝胶微球中仍含有约70%的水.  相似文献   

8.
We describe the assembly of two-component, hydrogel microparticle (microgel) monolayer films onto solid substrates via passive Coulombic adsorption from solution. By using two different microgel types with nearly identical sizes but different degrees of softness, the influence of particle deformation on film composition was determined. Determination of the microgel properties using a variety of light scattering techniques allowed for predictions of the film composition as a function of solution composition using a random sequential adsorption (RSA) model. The films were then studied via atomic force microscopy (AFM), and surface coverage and population statistics were determined from the images and compared to the model predictions. Deviations from the predicted particle adsorption behavior can be directly traced to differences in particle softness, deformation, and particle footprint following adsorption, which biases the particle coverage to the more rigid (smaller footprint) particles. Furthermore, by using a mixture of degradable and nondegradable core/shell particles, the identity of the particles can be unambiguously determined by measuring AFM height changes following erosion of the core from the microgels. These results show that, regardless of the solution diffusion properties of soft particles, their competition for surface adsorption from a binary mixture is largely dictated by their interactions with the surface and their deformation at the surface.  相似文献   

9.
Lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgel particles have been recently reported to act as pH-responsive particulate emulsifiers [Fujii, S.; Read, E. S.; Armes, S. P.; Binks, B. P. Adv. Mater. 2005, 17, 1014]. In this work, the synthesis and performance of such nanocomposite microgel particles are studied in more detail. Scanning electron microscopy, dynamic light scattering, nitrogen microanalyses, thermogravimetric analysis, aqueous electrophoresis, and acid-base titration were used to characterize the nanocomposites in terms of their particle size and morphology, polymer and silica contents, surface compositions, and critical swelling pH, respectively. Depending on the polarity of the oil phase and the purity of the nanocomposite particles, either oil-in-water or water-in-oil emulsions could be prepared at pH 8-9, but not at pH 2-3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity, light diffraction, and both electron and optical microscopy. In some cases, rapid demulsification could be induced by lowering the solution pH: addition of acid led to protonation of the 4-vinylpyridine residues, which imparted cationic microgel character to the nanocomposite particles. Cross-linking of the nanocomposite microgel particles is essential for their optimum performance as a pH-responsive emulsifier, but unfortunately it is not sufficient to allow recycling.  相似文献   

10.
The diffusion behavior of polymer latex particles in dispersion near the quartz interface has been estimated by evanescent wave dynamic light scattering (EVDLS) technique. The diffusion coefficient of the particles was measured as a function of the distance between the particle and interface. The apparent diffusion coefficient estimated by EVDLS was small for particles near the interface and increased upon increasing the distance from the interface, and then saturated at a certain value which is close to the value expected for free-motion. The range of the distance over which diffusion was affected by interaction with the interface depended on the added salt concentration. This means that the diffusion of the particle is influenced by an electrostatic interaction between the particle and quartz interface in addition to the hydrodynamic effect near the wall. This range was found to be more than 800?nm at 0?M salt condition but about 400?nm at 10-4 and 10-3?M salt conditions. Hence it is appropriate to say that the hydrodynamic effect reaches up to 400?nm and the electrostatic effect is longer ranged, more than 800?nm, for the system studied here. The EVDLS technique is a very powerful tool for quantitative estimations of the dynamic behavior of the particle near the interface and for estimation of the range where the wall effect is dominant. EVDLS will give us an answer to the question of “where is the ‘interface’ and where is the ‘bulk’?”.  相似文献   

11.
12.
Near-monodisperse, sterically stabilized poly(2-vinylpyridine) (P2VP) microgels were synthesized by emulsion polymerization. These particles exhibited completely reversible pH-responsive swelling/deswelling behavior in aqueous solution. Stopped-flow light scattering was employed to investigate the kinetics of pH-induced deswelling in highly dilute dispersions. Upon a pH jump from 2 to various final solution pH values (>or=5.4), the scattered light intensity of an aqueous dispersion of a 1,960 nm microgel exhibited an abrupt initial increase, followed by a gradual decrease to the final equilibrium value. The whole microgel-to-latex deswelling process occurred over time scales of approximately 0.5-1.0 s, which is much slower than the kinetics for latex-to-microgel swelling. The microgel deswelling kinetics depends on the final pH, with a higher final pH leading to a faster rate of shrinkage. Close inspection of the deswelling kinetics during the early stages (<0.2 s) revealed that initial microgel collapse occurred within approximately 50 ms, with more rapid transitions being observed when higher final pH values were targeted. Addition of external salt significantly accelerates the kinetics of deswelling. Systematic studies of the microgel-to-latex transition for a series of six near-monodisperse P2VP particles (with swollen microgel diameters ranging from 1270 to 4230 nm) has also been investigated. The characteristic deswelling time for initial microgel collapse, tau deswell, correlated fairly well with the initial swollen microgel radius, R, in agreement with the Tanaka equation. Moreover, the collective diffusion coefficient of the gel network, D, calculated from the slope of the tau deswell- R (2) curve, was of the order of 10 (-7) cm (2) s (-1).  相似文献   

13.
Microgel particles are cross-linked polymer particles. When dispersed in a good solvent for the polymer concerned, they are able to respond to a range of external stimuli by changing volume. Hence, microgel particles are suited to numerous applications (for example, controlled uptake and release) in the pharmaceutical, coatings, and water treatment industries. In this work, pH-sensitive, 0.5 wt % cross-linked poly(2-vinylpyridine) (PVP) microgel particles have been prepared and characterized. When the dispersion pH is decreased below 4.5, the pyridine groups become protonated and the microgel network becomes positively charged, causing the particles to expand. To investigate the possibility of using light as a trigger for effecting volume changes, the interaction of these microgel particles with a photodegradable anionic surfactant, 4-hexylphenylazosulfonate (C(6)PAS), has been investigated using dynamic light scattering and electrophoretic mobility measurements. The electrostatic attraction between the positively charged microgel network (at solution pH 3) and the negatively charged headgroups on the surfactant molecules caused a dramatic decrease in particle volume, and charge-reversal of the particles occurred with increasing surfactant concentration. The UV irradiation of phenylazosulfonate surfactants destroys the anionic headgroup of the molecules, and the microgel particles re-swell. The irradiation of PVP dispersions in the presence of C(6)PAS, along with mixed surfactant systems of sodium dodecyl sulfate plus C(6)PAS, has been investigated.  相似文献   

14.
The absorption of two hydrophobically modified organic salts (HMOSs), containing azobenzene units, into poly(N-isopropylacrylamide-co-acrylic acid) microgel particles has been studied at pH 8 and 20 °C. These dispersions were then irradiated with UV light (wavelength 365 nm) for 10 min to observe the effect on the microgel particle properties, such as the adsorbed amount of the HMOS, the particle size, and the electrophoretic mobility. We show that irradiation of these dispersions with UV light can lead to induced, partial desorption of the HMOS molecules, with concomitant changes in the size and electrophoretic mobility of the microgel particles. This is due to a conformational switch (trans-form to cis-form) in the HMOS molecules, which reduces the strength of the hydrophobic interaction between the HMOS molecules and the isopropyl moieties within the microgel network. Moreover, the original absorbed amounts, size, and electrophoretic mobility values can be largely restored after storage in the dark for extended periods.  相似文献   

15.
Light scattering has long been established as a technique for measuring the molecular weight and radius of gyration of polymer molecules. Depolarized light scattering can be studied accurately with lassers. The theory of static and dynamic depolarized light-scattering spectroscopy is presented and illustrated with two examples of novel particles in solution. From the static intensity measured as a function of angle, the length of rod-like molecules can be evaluated. More complicated geometrical measures are obtained in the eneral case. From the dynamic light scattering, the translational self-diffusion coefficient and the rotational diffusion coefficient are obtained. These quantities can be interpreted in terms of a major semi-axis length and an axial ratio for the molecule or particle by using the Perrin equations.  相似文献   

16.
The structure factors, short- and long-time diffusion coefficients, and hydrodynamic interactions of concentrated poly(N-isopropylacryamide) microgel suspensions were measured with simultaneous static and dynamic three-dimensional cross-correlated light scattering. The data are interpreted through comparison to hard sphere theory. The structure factors are known to be described well by the hard sphere approximation. When the structure factor is fit to an effective hard sphere volume fraction and radius, the diffusion and hydrodynamic interactions are also well described by the hard sphere model. We demonstrate that one single hard sphere volume fraction is sufficient to describe the microgel structures, hydrodynamic interactions, and long- and short-time collective diffusion coefficients. This result is surprising because the particle form of the microgels at these temperatures is not rigid, but rather "fuzzy" spheres with dangling polymer chains.  相似文献   

17.
We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.  相似文献   

18.
We report on pH‐responsive and thermoresponsive hybrid materials based on the assembly of gold nanorods, Au NRs, into multiresponsive, crosslinked copolymer microgel particles. These microgel particles were prepared by the surfactant‐free emulsion polymerization of N‐isopropylacrylamide and acrylic acid using N, N′‐methylene bis‐acrylamide as a crosslinker, which produces particles measuring approximately 160 nm that are interconnected to one other. Cetyltrimethyl ammonium bromide‐stabilized Au NRs were also prepared independently using a seed‐mediated growth method and then loaded into swollen, deprotonated, acrylic acid‐containing microgel particles using the electrostatic interactions between the oppositely charged particles. Transmission electron micrographs of the as‐prepared hybrid Au NR–microgel particles confirmed that the Au NRs were attached to the surface of the microgel particles. The size‐dependent temperature‐responsive characteristics of the hybrid microgel particles were studied by dynamic light scattering, and it was found that as the temperature increased across the phase transition temperature, the particle size decreased to 56% of the original volume. The thermoresponsive and pH‐responsive optical properties of the hybrid microgel particles were also systematically investigated. The thermo‐ and pH‐induced shrinkage of the microgel led to an increase in the UV–vis absorption intensity and caused a significant blue shift in the longitudinal surface plasmon bands of the Au NRs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Poly(N-isopropylacrylamide)/chitosan (PNIPAM/CS) core-shell microgel was synthesized by graft copolymerization. The microstructure of copolymers was characterized by FT-IR spectrum and (1)H-nuclear magnetic resonance ((1)H NMR). Transmission electron microscope (TEM) and dynamic light scattering (DLS) measurements display that the microgel has high monodispersity and with a core-shell structure. For swelling the microgel in various alcohol solutions, the particles first shrink; then flocculation occurs resulted from weak aggregation of particles with the increase of alcohol concentration. The investigation of the size of microgels as a function of temperature shows that the thermo-sensitive property is markedly exhibited when the alcohol concentration is low, and vanishes when the alcohol concentration exceeds some value where the microgels have the lowest size.  相似文献   

20.
The dynamics of polymers on the nm and ns scales inside responsive microgels was probed by means of Neutron Spin Echo (NSE) experiments. Four different microgels were studied: poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEAAM) microgels, a P(NIPAM-co-DEAAM) copolymer microgel and a core-shell microgel with a PDEAAM core and a PNIPAM shell. These four different microgel systems were investigated in a D(2)O/CD(3)OD solvent mixture with a molar CD(3)OD fraction of x(MeOD) = 0.2 at 10 °C. The PNIPAM and the P(NIPAM-co-DEAAM) microgels are in the collapsed state under these conditions. They behave as solid diffusing objects with only very small additional contributions from internal motions. The PDEAAM particle is swollen under these conditions and mainly Zimm segmental dynamics can be detected in the intermediate scattering function at high momentum transfer. A cross-over to a collective diffusive motion is found for smaller q-values. The shell of the PDEAAM-core-PNIPAM-shell particle is collapsed, which leads to a static contribution to S(q,t); the core, however, is swollen and Zimm segmental dynamics are observed. However, the contributions of the Zimm segmental dynamics to the scattering function are smaller as compared to the pure PDEAAM particle. Interestingly the values of the apparent solvent viscosities inside the microgels as obtained from the NSE experiments are higher than for the bulk solvent. In addition different values were obtained for the PDEAAM microgel, and the PDEAAM-core of the PDEAAM-core-PNIPAM-shell particle, respectively. We attribute the strongly increased viscosity in the PDEAAM particle to enhanced inhomogeneities, which are induced by the swelling of the particle. The different viscosity inside the PDEAAM-core of the PDEAAM-core-PNIPAM-shell microgel could be due to a confinement effect: the collapsed PNIPAM-shell restricts the swelling of the PDEAAM-core and may modify the hydrodynamic interactions in this restricted environment inside the microgel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号