首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New solid solutions with the composition of Ca(1-x)BixVxMo(1-x)O4 prepared by a solid-state method were found as novel photocatalysts with enhanced activity for O(2) evolution from aqueous solutions containing sacrificial reagent AgNO3 under visible-light irradiation (>420 nm). The obtained solid solutions crystallized in tetragonal crystal structures, except one of the end compounds, BiVO4, which crystallized in monoclinic structures. The diffuse reflection spectra of the solid solutions shift monotonically to a long wavelength as the ratio of Bi (V) ions to Ca (Mo) ions increases in the solid solution. The band structure and the dependence of the photocatalytic properties were discussed in relation to the solid-solution compositions and photophysical properties.  相似文献   

2.
We investigated the Fe-site substitution effect on the structural and magnetic properties of the infinite layer iron oxide Sr(Fe(1-x)M(x))O(2) (M = Co, Mn) using synchrotron X-ray diffraction, neutron diffraction, and (57)Fe Mo?ssbauer spectroscopy. Both systems have a similar solubility limit of x ≈ 0.3, retaining the ideal infinite layer structure with a space group of P4/mmm. For the Fe-Co system, both in-plane and out-of-plane axes decrease linearly and only slightly with x, reflecting the ionic radius difference between Fe(2+) and Co(2+). For the Fe-Mn system the lattice evolution also follows Vegard's law but is anisotropic: the in-plane axis increases, while the out-of-plane decreases prominently. The magnetic properties are little influenced by Co substitution. On the contrary, Mn substitution drastically destabilizes the G-type magnetic order, featured by a significant reduction and a large distribution of the hyperfine field in the Mo?ssbauer spectra, which suggests the presence of magnetic frustration induced presumably by a ferromagnetic out-of-plane Mn-Fe interaction.  相似文献   

3.
Infrared and Raman vibrational spectra (700-30 cm(-1)) have been recorded on various K2PdCl(4-x)Br(x) (0 < or = x < or = 4) powdered samples at 300 K, including both K2PdCl4 and K2PdBr4 compounds and ten solid solutions with a bromide content varying from 5-95%. Characteristic variations of the sectra clearly demonstrate a wide domain of existence of the solid solutions and the only possible additional existence, due to no IR-Raman coincidence, of the 'trans' planar PdCl4Br2 centrosymmetric anion. A comparison of the vibrational data with results of valence force field calculations allows us to characterize this new anion, in Raman by two signals at 286 and 225 cm(-1) (v sym., Ag, PdCl2 and PdBr2, respectively), in Infrared by not only the two bands at 309 and 200 cm(-1) (v asym. B3u + B2u, of PdCl2 and PdBr2) but also intense deformation modes in the 178-140 cm(-1) wavenumber range. These results suggest slight modifications in the internal f(Pd-Cl) and f(Pd-Br) force constans on going from the PdCl4(2-) or PdBr4(2-) anions to the 'trans' PdCl2Br2(2-) anonic species.  相似文献   

4.
The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.  相似文献   

5.
An experimental investigation of the crystallographic,Raman and transport properties of the Ce1-x(Nd0.74Tm0.26)xO2-x/2(0.1≤x≤0.6)doped ceria system was performe...  相似文献   

6.
High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) ? and c = 5.3976(11) ?. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.  相似文献   

7.
The (Na(1-x)Cu(x))(2)Ta(4)O(11) (0 ≤ x ≤ 0.78) solid-solution was synthesized within evacuated fused-silica vessels and characterized by powder X-ray diffraction techniques (space group: R3c (#167), Z = 6, a = 6.2061(2)-6.2131(2) ?, c = 36.712(1)-36.861(1) ?, for x = 0.37, 0.57, and 0.78). The structure consists of single layers of TaO(7) pentagonal bipyramids as well as layers of isolated TaO(6) octahedra surrounded by Na(+) and Cu(+) cations. Full-profile Rietveld refinements revealed a site-differentiated substitution of Na(+) cations located in the 12c (Wyckoff) crystallographic site for Cu(+) cations in the 18d crystallographic site. This site differentiation is driven by the linear coordination geometry afforded at the Cu(+) site compared to the distorted seven-coordinate geometry of the Na(+) site. Compositions more Cu-rich than x ~ 0.78, that is, closer to "Cu(2)Ta(4)O(11)", could not be synthesized owing to the destabilizing Na(+)/Cu(+) vacancies that increase with x up to the highest attainable value of ~26%. The UV-vis diffuse reflectance spectra show a significant red-shift of the bandgap size from ~4.0 eV to ~2.65 eV with increasing Cu(+) content across the series. Electronic structure calculations using the TB-LMTO-ASA approach show that the reduction in bandgap size arises from the introduction of Cu 3d(10) orbitals and the formation of a new higher-energy valence band. A direct bandgap transition emerges at k = Γ that is derived from the filled Cu 3d(10) and the empty Ta 5d(0) orbitals, including a small amount of mixing with the O 2p orbitals. The resulting conduction and valence band energies are determined to favorably bracket the redox potentials for water reduction and oxidation, meeting the thermodynamic requirement for photocatalytic water-splitting reactions.  相似文献   

8.
In the present paper, the ion dynamics and relaxation of fluoride ions in Pb(1-x)Sn(x)F(2) (with x=0.2-0.6) solid solutions, prepared by mechanochemical milling, are studied in the conductivity formalism over wide ranges of frequencies and temperatures. The conductivity spectra of the investigated materials are analyzed by the Almond-West (AW) power-law model. The estimated values of the hopping rates and the dc conductivity of different compositions are thermally activated with almost the same activation energy. The calculated values of the concentration of mobile ions, n(c), are almost independent of temperature and composition for x=0.2-0.4. The maximum value of n(c) is obtained for the x=0.6 sample, although it does not show the maximum conductivity. Therefore, the composition dependence of the ionic conductivity of these solid solutions could be explained based on the extracted parameters. The results presented in the current work indicate that the AW model represents a reasonable approximation of the overall frequency-dependent conductivity behavior of the investigated materials. The conductivity spectra at different temperatures for each composition are successfully scaled to a single master curve, indicating a temperature-independent relaxation mechanism. For different compositions, however, the conductivity spectra cannot be scaled properly, indicating composition-dependent relaxation dynamics.  相似文献   

9.
A series of Ti(1-x)Zr(x)O(2) solid solutions photocatalysts (x = 0.000, 0.045, 0.090, 0.135, and 0.180) was directly obtained by an ultrasonic spray pyrolysis method. Compared with previous methods for solid solutions, our preparation was very fast. The resulting samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, nitrogen adsorption, and UV-vis diffuse reflectance spectroscopy. The characterizations revealed core-shell spherical structures of the resulting solid solutions. We evaluated photocatalytic activities of the solid solutions on degradation of rhodamine B in aqueous solution under simulated solar light. It was found that Ti(0.91)Zr(0.09)O(2) solid solution exhibited the highest photocatalytic activity among all the as-prepared samples. Its activity was much higher than that of P25. The formation mechanism of core-shell spherical structures was proposed. Moreover, we successfully extended this method to prepare microspheres of ceria and ceria-zirconia solid solutions. We think this general method may be easily scaled up for industrial production of microspherical solid solutions photocatalysts and catalysts.  相似文献   

10.
It has been experimentally determined that Cs2ZrCl6:Os4+ shows luminescence and up-converted luminescence from the highest t(2g) (4) excited level 2 A1g(1A1g), whereas Cs2GeF6:Os4+ 2 A1g(1A1g) does not luminescence at all. Ab initio quantum chemical calculations on these materials are presented here and show that the variation of the energy gap between the t2g 4 and t2g 3 eg 1 manifolds with F to Cl chemical substitution is a key factor to interpret the experimental findings. This energy gap is calculated to be some 1500 cm(-1) (approximately 2nua1g) in the fluoride host, whereas it is about 3300 cm(-1) (approximately 9nua1g) in the chloride host. The calculated values for the ground state totally symmetric vibrational frequency nu(a1g) are 626 cm(-1) (Cs2GeF6:Os4+) and 355 cm(-1) (Cs2ZrCl6:Os4+), in good agreement with the available experimental data. Geometrical structure of (OsX6)2- clusters (X=F,Cl) embedded in Cs2GeF6 and Cs2ZrCl6 lattices is calculated as well. New assignments for some spectral features based in the results of our calculations are proposed.  相似文献   

11.
Extended X-ray absorption fine structure (EXAFS) has been utilized to investigate the local atomic structure around Th, U, and Pu atoms in polycrystalline mixed dioxides Th(1-x)M(x)O2 (with M = U, Pu) for x ranging from 0 to 1. The composition dependence of the two first-coordination-shell distances was measured throughout the entire composition range for both solid solutions. The first-shell distances vary slightly across the solid-solution composition with values close to those of the pure dioxide parents, indicating a bimodal cation-oxygen distribution. In contrast, the second-shell distance varies strongly with composition, with values close to the weighted amount average distances. Nevertheless, in both systems, the lattice cell parameters, deduced from the first- and second-shell bond determined by EXAFS, are very close to those measured from X-ray diffraction (XRD). They vary linearly with composition, accurately following Vegard's law.  相似文献   

12.
13.
Mg(x)Zn(1-x)O ternary alloy nanocrystals with hexagonal wurtzite structures were fabricated by using the sol-gel method. X-ray diffraction patterns, UV-vis absorption spectra, and photoluminescence spectra were used to characterize the structural and optical properties of the nanocrystals. For as-prepared nanocrystals, the band gap increases with increasing Mg content. Weak excitonic emission with strong deep-level emission related to oxygen vacancy and interface defects is observed in the photoluminescence spectra at room temperature. Thermal annealing in oxygen was used to decrease the number of defects and to improve the quality of the nanocrystals. In terms of XRD results, the grain sizes of nanocrystals increase with increasing annealing temperature and the lattice constants of alloy are smaller than those of pure ZnO. The band gap becomes narrower with increasing annealing temperature. For Mg(x)Zn(1-x)O nanocrystals (x=0.03-0.15) annealed at temperatures ranging from 500 to 1000 degrees C, intense near-band-edge (NBE) emissions and weak deep-level (DL) emissions are observed. Consequently, the quality of Mg(x)Zn(1-x)O nanocrystals can be improved by thermal annealing.  相似文献   

14.
Summary A series of iron(II) complexes of the type [FeL2(NCS)2] have been prepared and characterized, where L denotes the bidentate diimine ligands 2-pyridinalphenylimine orN-phenyl-2-pyridinaldimine (ppi) and its methyl-substituted derivatives. The electronic ground spin-state of iron(II) in these complexes has been studied by means of Mössbauer spectroscopy and magnetic susceptibility measurements.  相似文献   

15.
The thermoelectric performance of EuCd(2)Sb(2) and YbCd(2)Sb(2) was improved by mixed cation occupation. The composition, structure, and thermoelectric properties of Yb(x)Eu(1-x)Cd(2)Sb(2) (x=0, 0.5, 0.75, and 1) have been investigated. Polycrystalline samples are prepared by direct reaction of the elements. Thermoelectric properties were investigated after densification of the materials by spark plasma sintering. Yb(x)Eu(1-x)Cd(2)Sb(2) crystallizes in the P3m1 space group. The lattice parameters increase with the europium content. These materials show low electrical resistivity, high Seebeck coefficient, and low thermal conductivity together with high carrier concentration and high carrier mobility. ZT values of 0.88 and 0.97 are obtained for Yb(0.5)Eu(0.5)Cd(2)Sb(2) and Yb(0.75)Eu(0.25)Cd(2)Sb(2) at 650 K, respectively.  相似文献   

16.
The complete assignment of the vibrational spectra of 2(1H)-pyridinone (2-pyridone), 1-D-2(1H)-pyridinone (2-pyridone ND) and 1-methyl-2(1H)-pyridinone (N-methyl-2-pyridone) is obtained from a comparative analysis of their IR and Raman spectra (condensed phase and molar solutions in CHCl3 or CDCl3). For the 2-pyridone centrosymmetrical dimer, the strength of the NH…O hydrogen bond association is discussed. Comparison is made with the recent work of Medhi and of Nowak et al.  相似文献   

17.
Colossal magnetoresistance is a rare phenomenon in which the electronic resistivity of a material can be decreased by orders of magnitude upon application of a magnetic field. Such an effect could be the basis of the next generation of memory devices. Here we report CMR in the antiferromagnetic oxypnictide NdMnAsO(1-x)F(x) as a result of competition between an antiferromagnetic insulating phase and a paramagnetic semiconductor upon application of a magnetic field. Mn(2+) oxypnictides are relatively unexplored, and tailored synthesis of novel compounds could result in an array of materials for further investigation and optimization.  相似文献   

18.
19.
The crystal structure of Cs3Fe2F9 has been redetermined with more accuracy. It consists of binuclear entities of face-sharing octahedra containing iron(III). The magnetic properties have been analyzed on the basis of ferromagnetic interactions within the isolated units, which are unusual for d5 ions. However, at low temperature intercoupling between dimers arise and has to be taken into account to fit the susceptibility data in the considered temperature range.  相似文献   

20.
The structural organization of sodium borophosphate glasses with composition (Na(2)O)(x)(BPO(4))(1-x) (0.25 ≤x≤ 0.55) has been investigated by differential scanning calorimetry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), as well as single- and double resonance (11)B and (31)P magic-angle spinning (MAS) NMR. (11)B MAS-NMR data indicate the dominance of anionic four-coordinated boron units, and (31)P MAS NMR reveals the successive transformation of neutral P(3) into singly charged P(2) units and their further transformation into doubly charged P(1) units at high Na(2)O contents. The quantification of these units provides detailed insight into the competition of the network formers borate and phosphate for the network modifier oxide. At low modifier content (x < 0.35), the anionic species are almost exclusively borate (B(4)) units, whereas at higher sodium concentrations, large numbers of anionic phosphate (P(2) and P(1)) species are formed. O-1s XPS data provide a quantitative distinction between B-O-B, B-O-P, and P-O-P linkages as well as non-bridging oxygen atoms, and comparable numbers can be extracted from (11)B and (31)P MAS-NMR experiments. Both XPS as well as (31)P{(11)B} and (11)B{(31)P} rotational echo double resonance (REDOR) NMR results reveal strong interactions between the two network formers boron oxide and phosphorus oxide, resulting in a preferred formation of B-O-P linkages. For higher Na(2)O contents, however, the successive network modification diminishes this preference, resulting in close-to-statistical network connectivities. Compositional trends of T(g) in the Na(2)O-B(2)O(3)-P(2)O(5) glass forming system can be correlated with the overall network connectedness, expressed by the total number of bridging oxygen atoms per network former species. However, separate linear correlations are observed for different compositional lines, indicating also the relevance of the type of network former linkages present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号