首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
温度对自增湿阴极开放式质子交换膜燃料电池(PEMFC)的性能有着重要的影响. 依据自制的常压自增湿型PEMFC及温度控制设备搭建测试平台,测试了燃料电池在不同工作温度下的输出特性曲线-伏安曲线和功率输出曲线. 通过拟合得到了电极过程动力学参数,分析了工作温度影响电池性能的主要原因.  相似文献   

2.
王爱丽  孙瑜  梁志修  陈胜利 《化学学报》2009,67(22):2554-2558
以XC-72碳黑为载体, H2[PtCl6]为前驱体, 采用浸渍还原法并结合后续高温处理, 制备出不同尺寸Pt颗粒(3~8 nm)的Pt/C催化剂. 在基于质子交换膜燃料电池(PEMFC)单电池的电化学电解池中, 对实际PEMFC催化层中燃料电池反应的Pt催化剂尺寸效应进行了研究. 结果表明, 在PEMFC催化层环境中, Pt/C纳米催化剂对氢氧化和氧还原反应均有显著的粒度尺寸效应. 随着Pt粒度减小, 氢氧化和氧还原反应的表面积活性均降低.  相似文献   

3.
具有自增湿能力的低温质子交换膜燃料电池膜电极是实现自增湿燃料电池的重要途径,对于燃料电池的商业化具有十分重要的意义,它不仅可以大幅度减小燃料电池系统的体积,提升燃料电池系统的输出功率密度,还可以有效降低燃料电池的制造成本. 目前,低温质子交换膜燃料电池自增湿膜电极的研究主要是集中在构建具有自增湿能力的质子交换膜、自增湿催化层和复合自增湿层三个方面. 本文主要从这三个方面系统介绍近年来国内外低温质子交换膜燃料电池自增湿膜电极方面的研究进展和发展趋势.  相似文献   

4.
阮明波  刘京  宋平  徐维林 《催化学报》2022,43(1):116-121
近几十年来,聚合物电解质膜燃料电池(PEMFC)因其在零排放汽车、固定式和便携式发电设备中的应用而得到迅速发展.燃料电池的阴极氧还原反应(ORR)和阳极氢氧化反应(HOR)常用的催化剂为Pt基催化剂,因此整个燃料电池系统的成本高昂.而ORR的反应速率比HOR慢得多,阴极上的Pt消耗量远高于阳极上.为了降低燃料电池Pt的...  相似文献   

5.
微波-胶体法制备PEMFC纳米Pt/C电催化剂   总被引:2,自引:0,他引:2  
质子交换膜燃料电池(PEMFC),具有高功率密度、高能量转换效率、低工作温度和环境友好的优点,被认为是第五代燃料电池和未来较为理想的电动汽车动力源之一。为了降低PEMFC中氧还原反应的电化学极化,提高电池的输出功率,目前普遍采用Pt作为催化剂。Pt资源匮乏,价格昂贵,研究开发更好的制备工艺以减小Pt金属尺  相似文献   

6.
在采用有机溶胶法制得了一类活性组分高度分散的具有良好的低温活性的高性能催化剂的基础上,进行了催化剂的10克级放大试验,实现了燃料电池催化剂的小批量生产,催化剂的活性组分颗粒度可达2.8nm,活性比表面积可达450m2/g Pt;使用自己小批量生产的催化剂,采用自己提出的一种直接涂膜技术和免增湿技术,研制出了面积为275cm2的大面积免增湿膜电极,并且成功地设计和组装出了一台5KW的常温常压免增湿氢/空燃料电池电堆,电堆各项指标达到或者优于目前国内外报道的结果.  相似文献   

7.
采用脉冲微波辅助化学还原法制备了质子交换膜燃料电池(PEMFC)用Pt/C催化剂.通过X射线衍射(XRD)和高分辨透射电镜(HRTEM)等分析技术对催化剂的微观结构和形貌进行了表征.利用循环伏安(CV)法计算了催化剂的电化学比表面积.在此基础上制备了膜电极(MEA)并组装成单电池,考察了制备的Pt/C催化剂作为单电池阴...  相似文献   

8.
目前影响质子交换膜燃料电池(PEMFC)迅速发展并商业化的主要问题之一是阳极催化剂抗CO的毒化能力。Pt因其对氢的氧化具有高的催化活性而广泛地用作PEMFC的阳极催化剂,也有人研究将其它金属用于PEMFC阳极催化剂,但催化活性要比Pt低得多。而Pt作PEMFC的阳极催化剂一个问题是痕量的CO,如10-100ppm就可以使Pt催化剂中毒。  相似文献   

9.
在采用有机溶胶法制得了一类活性组分高度分散的具有良好的低温活性的高性能催化剂的基础上,进行了催化剂的10克级放大试验,实现了燃料电池催化剂的小批量生产,催化剂的活性组分颗粒度可达2.8nm,活性比表面积可达450m2/g Pt;使用自己小批量生产的催化剂,采用自己提出的一种直接涂膜技术和免增湿技术,研制出了面积为275cm2的大面积免增湿膜电极,并且成功地设计和组装出了一台5KW的常温常压免增湿氢/空燃料电池电堆,电堆各项指标达到或者优于目前国内外报道的结果。  相似文献   

10.
应用高压有机溶胶法制得高性能的Pt/C催化剂.该催化剂的活性颗粒度达2.8 nm,活性比表面为450 m2/g,并进行了小批量试产(10 g).建立新型直接涂膜电极和免增湿技术,并制作了275 cm2的膜电极,设计和组装5 kW质子交换膜燃料电池电堆,以氢气为燃料,空气为氧化剂在常温常压免增湿条件下试运行,电堆连续运行10 h,输出功率基本稳定不变.  相似文献   

11.
A self-humidifying membrane based on low-cost sulfonated poly (ether ether ketone) (SPEEK) hybrid with sulfated zirconia (SO4(2-)/ZrO2, SZ)-supported platinum catalyst (Pt-SZ catalyst) was investigated for fuel cell applications. The SZ particle, a solid-state superacid with hygroscopic and high proton conductivity properties, was employed as the catalyst support. The SPEEK/Pt-SZ self-humidifying membrane was characterized by TEM and SEM coupled with EDX. FT-IR was conducted to verify the effect of SPEEK/Pt-SZ membrane on catalytic combination of crossover hydrogen and oxygen. To display the advantages of Pt-SZ catalyst as the additive, the IEC, water uptake, proton conductivity, single-cell performance, and areal resistance measurements were compared between the plain SPEEK membrane, SPEEK/Pt-SiO2 membrane, and the SPEEK/Pt-SZ membrane. The SPEEK/Pt-SZ membrane exhibited the highest IEC value, proton conductivity, single-cell performance, and the lowest areal resistance relative to the plain SPEEK and SPEEK/Pt-SiO2 membranes. The SPEEK/Pt-SZ self-humidifying membrane exhibited peak power density of 1.0 W/cm2 under dry operation condition compared with 0.89 W/cm2 and 0.58 W/cm2 of SPEEK/Pt-SiO2 and plain SPEEK membranes, respectively. The incorporation of the catalytic, hygroscopic and proton conductive Pt-SZ catalyst in the SPEEK/Pt-SZ self-humidifying membrane facilitated water balance and proton conduction, and accordingly improved its single cell performance under dry operation. In addition, the enhanced OCV and the decreased areal ohmic resistance confirmed the promotion effect of Pt-SZ catalyst in the self-humidifying membrane on suppressing reactant crossover and the membrane self-humidification.  相似文献   

12.
使用TGP-H-028(0.28mm),TGP-H-060(0.19mm),TGP-H-030(0.11mm)等3种Toray碳纸制备膜电极,将组装燃料电池进行极化曲线与交流阻抗分析发现,厚碳纸TGP-H-028对自增湿发电性能略为有利,其最大功率密度比TGP-H-030薄碳纸高0.05W/cm2左右;用聚四氟乙烯乳液疏水处理TorayTGP-H-060碳纸,制备的MEA的自增湿电性能随着聚四氟乙烯质量分数(20%~40%)的升高而增大,最大功率密度升高至0.25W/cm2左右.当聚四氟乙烯质量分数继续升高到60%时,电性能开始下降,并比质量分数为40%的聚四氟乙烯的电性能低.  相似文献   

13.
本文提出一种新颖简易的方法制备PEMFC的亲水型薄层MEA,其阴、阳极催化层Pt担量分别为0. 4和 0. 2mg/cm2.实验发现,在亲水型MEA的表面上,有大量钟乳石状细微颗粒存在,从而使电极催化层的比表面积增大.在小电流密度区( <1A/cm2 ),亲水型MEA的极化性能差于Pt担量为 0. 7mg/cm2的疏水型常规MEA,但在大电流密度区( >2A/cm2 ),则前者的极化性能优化后者;亲水型MEA的最大输出比功率为1. 23W/cm2,高于疏水型电极的 1. 19W/cm2;在大电流密度区,亲水型MEA中的Pt电化学比活性也明显高于疏水型电极.  相似文献   

14.
A novel preparation method for a composite proton exchange membrane with reinforced strength and self-humidifying property was developed. Using self-assembly method, highly dispersed poly(diallyldimethylammonium chloride) (PDDA) stabilized Pt nanoparticles were mounted onto the pores of poly(tetrafluoroethylene) (PTFE) porous film to serve the self-humidifying purpose. With Pt nanoparticles fixed on the PTFE pores, the potential problem of any short circuit because of the use of metal nanoparticles can be prevented. Pt-PDDA/PTFE substrate in the composite membrane can enhance the mechanical strength of the membrane and distribute self-humidifying layer adjacent to the anode side. Compared with the cells fabricated with conventional Nafion® and PTFE/Nafion membranes, the performance of the cells with this composite membrane is dramatically improved under dry conditions. Electrochemical impedance spectroscopy technique revealed that these self-humidifying composite membranes could minimize membrane conductivity loss under dry conditions.  相似文献   

15.
平整层对PEM燃料电池自增湿性能的影响   总被引:1,自引:0,他引:1  
制备了不同聚四氟乙烯(PTFE)含量与不同碳载量的电极平整层,经过相同的膜电极成型工艺处理后,组装成单电池进行极化曲线与交流阻抗分析,发现平整层中的聚四氟乙烯含量从24%增到35%时,H2/O2型燃料电池自增湿发电最高功率密度增长了0.1W/cm2,但当聚四氟乙烯含量增大到42%时,电性能略有下降;然而H2/Air型燃料电池自增湿发电性能却随着聚四氟乙烯含量增大而提高.平整层载量对自增湿发电影响较大,平整层载量为4.0mg/cm2的膜电极与无平整层的膜电极在H2/O2自增湿操作下相比,最高功率密度提高约0.27W/cm2.通过压汞仪与扫描电镜(SEM)对平整层的物化性能进行了结构分析.  相似文献   

16.
Membrane electrode assemblies (MEA) for fuel cells require optimization of their nanoscale organization to reach performance parameters, which include enhanced power density, increased catalyst utilization and reduced cost. We applied sprayed layer-by-layer assembly to produce a high activity MEA for H(2)/O(2) fuel cells from polyaniline fibers (PANI-F). This technique produces "fast-prepared" membranes with nanoscale structure, which allows to adequately address specific tuning of their porosity, platinum loading, electronic conductivity, and proton conductivity. Pt nanoparticles were attached to the PANI-F in a reaction of selective heterogeneous nucleation. After functionalization, Pt/PANI-F were assembled with Nafion. Microscopic investigation revealed that functionalized polyaniline fibers formed a highly porous yet tight network of interpenetrating conductors connected to the catalytic Pt particles. The Pt/PANI-F LBL ultrathin MEA demonstrated a power densitiy of 63 mW cm(-2) and yielded a Pt utilization of 437.5 W g(-1) Pt which is comparable to the traditional fuel cell using carbon black as Pt support. Moreover, the amount of Pt used in this work is almost 2 times lower than for usual carbon-supported Pt catalysts.  相似文献   

17.
Monolayers of Pt nanoparticles of diameters of 2-3 nm with a high crystallinity were successfully anchored onto exfoliated nanoclay surfaces using a novel chemical vapor deposition process. Chemical bonding of Pt to the oxygen on the clay surface ensured the stability of the Pt nanoparticles, and hence, no leaching of Pt particles was observed after a prolonged ultrasonication and a rigorous mechanical agitation of Pt-clay in the Nafion solution during the membrane casting process. Systematic analysis using WAXD and TEM showed that the recasting process produced a new self-humidifying exfoliated Pt-clay/Nafion nanocomposite membrane with a high crystallinity and proton conductivity. In situ water production for humidification of the dry membranes without any external humidification was characterized by a combined water uptake and FTIR analysis of the as-prepared membrane after a single cell testing without using electrodes. The power density at 0.5 V of a single cell made of a Pt-clay/Nafion nanocomposite membrane was 723 mW/cm2, which is 170% higher than that made of a commercial Nafion 112 membrane of similar thickness. No compromise in mechanical properties was observed.  相似文献   

18.
High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.  相似文献   

19.
The performances of H(2)/O(2) metal-cation-free alkaline anion-exchange membrane (AAEM) fuel cells operated with commercially available Au/C and Ag/C cathodes are reported for the first time. Of major significance, the power density obtained with 4 mg cm(-2) Ag/C (60% mass) cathodes was comparable to that obtained with 0.5 mg cm(-2) Pt/C (20% mass) electrodes, whereas the performance when using the same Ag/C cathode in a Nafion-based acidic membrane electrode assembly (MEA) was poor. These initial studies demonstrate that the oxygen reduction electrokinetics are improved when operating Pt/C cathodes at high pH in AAEM-based fuel cells as compared with operation at low pH (in Nafion-based proton-exchange membrane fuel cells). The results of in situ alternating current impedance spectroscopy were core to the assignment of the source of the limited performances of the AAEM-based fuel cells as being the limited supply of water molecules to the cathode reaction sites. Minimizing the thickness of the AAEM improved the performances by facilitating back-transport of water molecules from the anode (where they are generated) to the cathode. The urgent need for development of electrode architectures that are specifically designed for use in AAEM-based fuel cells is highlighted.  相似文献   

20.
An ultrathin poly(tetrafluoroethylene) (PTFE)-reinforced multilayer self-humidifying composite membrane (20 microm, thick) is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer, and SiO2 supported nanosized Pt particles (Pt-SiO2) imbedded into the Nafion as the two side layers. The proton exchange membrane (PEM) fuel cell employing the self-humidifying membrane (Pt-SiO2/NP) turns out a peak power density of 1.40 W cm(-2) and an open circuit voltage (OCV) of 1.032 V under dry H2/O2 condition. The excellent performance is attributed to the combined result of both the accelerated water back-diffusion in the thin membrane and the adsorbing/releasing water properties of the Pt-SiO2 catalyst in the side layers. Moreover, the inclusion of the hygroscopic Pt-SiO2 catalyst inside the membrane results in an enhanced anode self-humidification capability and also the decreased cathode polarization (accordingly an improved cell OCV). Several techniques, such as transmission electronic microscopy, scanning electronic microscopy, energy dispersive spectroscopy, thermal analysis and electrochemical impedance spectroscopy etc., are employed to characterize the Pt-SiO2/NP membrane. The results are discussed in comparison with the plain Nafion/PTFE membrane (NP). It is established that the reverse net water drag (from the cathode to the anode) across the Pt-SiO2/NP membrane reaches 0.16 H2O/H+. This implies a good hydration of the Pt-SiO2/NP membrane and thus ensures an excellent PEM fuel cell performance under self-humidification operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号