首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spore dosimetry of solar UV radiation has been employed in several field intercomparison campaigns carried out in summer months in Japan and Europe. The dose-rate profiles, total daily doses and personal daily exposures have been determined and compared at five sites based on the spore inactivation dose (SID). The maximum dose rate (0.83 SID/min) and the maximum daily dose (197 SID) observed at subtropical Naha (26.2 degrees N) are about three times those observed at subarctic Abisko (68.4 degrees N). The amounts of personal exposure during three European campaigns are moderate and show a tendency of inverse relationships with the daily doses.  相似文献   

2.
In order to develop monitoring and assessment systems of biologically effective doses of solar-UV radiation, concurrent measurements of spectral photometry and spore dosimetry were conducted in summer months at four sites in Japan and Europe. Effectiveness spectra were derived by multiplying spectral irradiance in 0.5 nm steps between 290 and 400 nm with the inactivation efficiency of the spores determined using monochromatic radiation of fine wavelength resolution. Shapes of the effectiveness spectra were very similar at the four sites exhibiting major peaks at 303.5, 305.0, 307.5 and 311.0 nm. The dose rates for spore inactivation from direct survival measurements and from calculations by the integration of the effectiveness spectra were compared for 174 data points. The ratios (observed/calculated) of the two values were concordant with a mean of 1.26 (+/- 0.24 standard deviation [SD]). The possible causes for the variations and slightly larger observed values are discussed.  相似文献   

3.
Abstract— The biologically effective dose of solar UV radiation was estimated from the inactivation of UV-sensitive Bacillus subtilis spores. Two types of independent measurements were carried out concurrently at the Aerological Observatory in Tsukuba: one was the direct measurement of colony-forming survival that provided the inactivation dose per minute (ID/min) and the other was the measurement of the spectral irradiance by a Brewer spectrophotometer. To obtain the effective spectrum, the irradiance for each 1 nm wavelength interval from 290 to 400 nm was multiplied with the efficiency for inactivation derived from the inactivation action spectrum of identically prepared spore samples. Integration of the effective spectrum provided the estimate for ID/min. The observed values of ID/min were closely concordant with the calculated values for the data obtained in four afternoons in 1993. The average ratio (±SD) between them was 1.24 (±0.16) for 14 data points showing high inactivation rates (<0.05 ID/min). Considering difficulties in the absolute dosimetry of UV radiation, the concordance was satisfactory and improved credibility of the two types of monitoring systems of biologically effective dose of solar UV radiation.  相似文献   

4.
Abstract— The ultraviolet radiation (UV) resistance of B. cereus spores was shown to depend on their content of dipicolinic acid (DPA). Wild-type spores with decreasing amounts of DPA exhibited increased UV resistance. Similarly, spores devoid of DPA (DPA-minus), produced by a mutant strain of B. cereus unable to synthesize DPA, were more resistant to UV than mutant spores (DPA-plus) produced in the presence of exogenously supplied DPA. Resistance of both the wild type and mutant strains to ionizing radiation, however, was unaffected by DPA content. Comparison of the resistance of DPA-minus and DPA-plus mutant spores to UV of various wavelengths showed that the greater sensitivity of the latter DPA-plus spores appeared at wavelengths corresponding to the region of the first molecular absorption band of the calcium chelate of DPA. In the wild type and mutant, thymine photoproducts were produced at a greater rate and to a greater extent in spores with high levels of DPA than in spores with low DPA.
The data indicate that DPA transfers energy to DN A in vivo , which leads to the conclusion that DPA occurs in the spore protoplast.  相似文献   

5.
A multiple linear correlation is done between atmospheric transmissivity for four biologically active radiation daily doses (UVB, erythemal, DNA and plant damage) T, and three parameters (daily sunshine fraction σ, cosine of the daily minimum solar zenith angle μmin and daily total ozone column Ω). T is defined as the ratio of a daily dose to its extra‐atmospheric value. The data used are spectral UV measurements (390–400 nm at 0.5 nm step) recorded along year 2000 and over 8 months of year 2001 at Briançon Station (Alps, 1300 m above sea level) that forms part of the French UV network. The coefficients obtained from year 2000 correlation permit to retrieve daily doses for year 2001 with an average error running from 3 to 9% for monthly mean values and from 2 to 4.5% for 3‐monthly mean values, depending on daily dose type. The retrieval of yearly mean value gives an error between 4 and 7.5%. Retrieving the daily dose of a given day, where σ≥ 0.2, introduces error running from 16 to 32% depending on daily dose. An attempt to retrieve the yearly mean UVB daily dose for a northern France site, from the previous coefficients, gives encouraging results.  相似文献   

6.
Ozone and UV radiation were analyzed at eight stations from tropical to sub-Antarctic regions in South America. Ground UV irradiances were measured by multichannel radiometers as part of the Inter American Institute for Global Change Radiation network. The irradiance channels used for this study were centered at 305 nm (for UV-B measurements) and 340 nm (for UV-A measurements). Results were presented as daily maximum irradiances, as monthly averaged, daily integrated irradiances and as the ratio of 305 nm to 340 nm. These findings are the first to be based on a long time series of semispectral data from the southern region of South America. As expected, the UV-B channel and total column ozone varied with latitude. The pattern of the UV-A channel was more complex because of local atmospheric conditions. Total column ozone levels of < 220 Dobson Units were observed at all sites. Analysis of autocorrelations showed a larger persistence of total column ozone level than irradiance. A decreasing cross-correlation coefficient between 305 and 340 nm and an increasing cross-correlation coefficient between 305 nm and ozone were observed at higher latitudes, indicating that factors such as cloud cover tend to dominate at northern sites and that ozone levels tend to dominate at southern sites. These results highlight the value of long-term monitoring of radiation with multichannel radiometers to determine climatological data and evaluate the combination of factors affecting ground UV radiation.  相似文献   

7.
Five types of Bacillus subtilis spores (UVR, UVS, UVP, RCE, and RCF) differing in repair and/or recombinational capabilities were exposed to monochromatic radiations at 13 wavelengths from 50 to 300 nm in vacuum. An improved biological irradiation system connected to a synchrotron radiation source was used to produce monochromatic UV radiation in this extended wavelength range with sufficient fluence to inactivate bacterial spores. From the survival curves obtained, the action spectra for the inactivation of the spores were depicted. Recombination-deficient RCE (recE) and RCF (recF) spores were more sensitive than the wild-type UVR spores in the entire range of wavelengths. This was considered to mean that DNA was the major target for the inactivation of the spores. Vacuum-UV radiations of 125-175 nm were effective in killing the spores, and distinct peaks of the sensitivity were seen with all types of the spores. Insensitivities at 190 and 100 nm were common to all five types of spores, indicating that these wavelengths were particularly impenetrant and absorbed by the outer layer materials. The vacuum-UV peaks centering at 150 nm were prominent in the spores defective in recombinational repair, while the far-UV peaks at around 235 and 270 nm were prominent in the UVS (uvrA ssp) and UVP (uvrA ssp polA) spores deficient in removal mechanisms of spore photoproducts. Thus, the profiles of the action spectra were explained by three factors; the penetration depth of each radiation in a spore, the efficiency of producing DNA damage that could cause inactivation, and the repair capacity of each type of spore.  相似文献   

8.
Exposure to solar ultraviolet (UV) radiation is the major environmental factor implicated in the development of melanoma and other skin cancers, as well as eye damage and skin photoaging. Outdoor recreational activities such as cycling are increasingly pursued for health benefits, however little information is available regarding potential adverse effects of excessive sun exposure in this setting, nor about the anatomical distribution of solar dose. Polysulphone badges (UV dosimeters) were attached to the head, backs of hands and ankles of 22 cyclists during a seven-day charity bicycle ride in Queensland, Australia. Average daily exposures exceeded one minimal erythemal dose (MED) at all body sites except the ankle. Significant differences in UV dose among the various body sites were noted, with highest exposures recorded on the top of the head. Mean doses received at the ankle (0.94 MED), back of the hand (1.28 MED) and side of the head (1.14 MED) were 51%, 71% and 63% of those received at the top of the head (1.80 MED), respectively. These data indicate that cycling exposes adherents to substantial doses of UV radiation. Moreover, our observations suggest that even vertically-oriented, potentially shaded sites such as the lower leg typically receive doses of solar radiation no less than half of maximally exposed sites.  相似文献   

9.
We have investigated the influence of narrow-band UV radiation, 265–330 nm. on germination of spores of the fungus Cladosporium cucumerinum Ellis and Arth., using a Xe arc lamp and filters. Reciprocity of time and dose rate was demonstrated when fungal spores were subjected to UV radiation at 325 nm but failed to hold at 265 nm. Based on these findings, data on fluence response, and partial action spectra, we propose that there are two biologically active sites in this organism that are affected by radiation between 265 and 330 nm and that might be influenced by changes in the stratospheric ozone layer: a short-wave-sensitive site (265–295 nm) and a long-wave-sensitive site (300–330 nm). Data obtained with narrow-band interference filters confirmed previous reports of damage to nucleic acid from UV at 265–295 nm and in addition demonstrated significant inhibition by UV at 300–320 nm. Further studies of the 300 330 nm portion of the spectrum, using combinations of plastic and glass filters, showed that the influence of UV radiation in this region was primarily to produce a non-photoreactivable delay in germ-tube emergence.  相似文献   

10.
Abstract— The spore germination in Dictyostelium discoideum consists of four stages: activation, postactivation lag, swelling and emergence. Ultraviolet irradiation (total fluence of 250 J/m2) of spores at any time prior to late spore swelling allows full swelling, but inhibits the emergence of myxamoebae. In the case of freshly activated spores, a UV exposure time of 30 s (total fluence of 50 J/m2) is sufficient to reduce emergence to about 6% when measured after 24 h of incubation. This same fluence results in about 10% viability as measured by plaque forming ability. Experiments utilizing 'fractionated exposures' result in the same percentage inhibition of emergence as that found for 'single exposures' provided the total fluence is equivalent. The higher fluences (250 J/m2) which completely prevent emergence, do not affect the endogenous oxygen uptake of spores during swelling. Ultraviolet light irradiated spores respond to the same activation and deactivation treatments as control unirradiated spores. Ultraviolet irradiation after late spore swelling allows emergence to occur in only a small fraction of the population. This fraction of cells which can emerge after UV treatment is said to have passed a 'competence point', which is believed to be the time when all the events necessary for emergence have been completed. Though the sites of UV inactivation in spores can only be postulated at present, it is apparent that the initial stages of germination (activation, postactivation lag and spore swelling) occur independently of the UV sensitive sites. The final stage of germination (emergence), however, is dependent on UV sensitive functions.  相似文献   

11.
The European Light Dosimeter Network (ELDONET) has now been functional for more than four years. The network is based on dosimeters which measure radiation in three biologically relevant wavelength bands (UV-B, 280-315 nm; UV-A, 315-400 nm; and Photosynthetic Active Radiation, PAR, 400-700 nm). The ELDONET network is currently based on 33 stations with 40 instruments. The distribution of the instruments all over Europe allows measurement of the latitudinal and longitudinal light climate distribution. In addition, several instruments are active in South America, New Zealand, India, Africa and Japan. With some exceptions, the measured yearly doses depend on the latitude. While the maximal daily doses are almost comparable from station to station, seasonal changes and the different maximal solar zenith angles account for the differences in total yearly doses. Ratioing between UV-B and PAR allows the detection of subtle changes in the local light climate, due, for example, to mini-ozone holes encountered in northern Europe during spring. Comparison of satellite ozone data with terrestrial ELDONET measurements revealed an overall weak correlation between these data sets. However, local weather conditions, solar zenith angle and latitude as well as reflectivity (i.e. clouds and aerosol; satellite data) show a much stronger correlation to the doses received. The close relationship between the spectral sensitivity of the UV-B sensor used in the ELDONET dosimeter and the CIE erythemal action spectrum allows determination of the erythemal dose on the basis of the dosimeter readings.  相似文献   

12.
There are a range of UV models available, but one needs significant pre-existing knowledge and experience in order to be able to use them. In this article a comparatively simple Web-based model developed for the SoDa (Integration and Exploitation of Networked Solar Radiation Databases for Environment Monitoring) project is presented. This is a clear-sky model with modifications for cloud effects. To determine if the model produces realistic UV data the output is compared with 1 year sets of hourly measurements at sites in the United Kingdom and Thailand. The accuracy of the output depends on the input, but reasonable results were obtained with the use of the default database inputs and improved when pyranometer instead of modeled data provided the global radiation input needed to estimate the UV. The average modeled values of UV for the UK site were found to be within 10% of measurements. For the tropical sites in Thailand the average modeled values were within 1120% of measurements for the four sites with the use of the default SoDa database values. These results improved when pyranometer data and TOMS ozone data from 2002 replaced the standard SoDa database values, reducing the error range for all four sites to less than 15%.  相似文献   

13.
Spores of Bacillus subtilis are approximately ten times less likely to survive UV light irradiation in a vacuum than under atmospheric conditions. Photoproduct formation was studied in spores irradiated under ultrahigh vacuum (UHV) conditions and in spores irradiated at atmospheric pressure. In addition to the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine (TDHT), which is produced in response to irradiation at atmospheric pressure, two additional photoproducts, known as the cis-syn and trans-syn isomers of thymine dimer, are produced on irradiation in vacuo. The spectral efficiencies for photoproduct formation in spores are reduced under vacuum conditions compared with atmospheric conditions by a factor of 2-6, depending on the wavelength. Because formation of TDHT does not increase after irradiation in vacuo, TDHT cannot be responsible for the observed vacuum effect. Vacuum specific photoproducts may cause a synergistic response of spores to the simultaneous action of UV light and UHV. An increased quantum efficiency, destruction of repair systems and formation of irreparable lesions are postulated for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuo.  相似文献   

14.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

15.
Some bacterial species enter a dormant state in the form of spores to resist to unfavorable external conditions. Spores are resistant to a wide series of stress agents, including UV radiation, and can last for tens to hundreds of years. Due to the suspension of biological functions, such as DNA repair, they accumulate DNA damage upon exposure to UV radiation. Differently from active organisms, the most common DNA photoproducts in spores are not cyclobutane pyrimidine dimers, but rather the so-called spore photoproducts. This noncanonical photochemistry results from the dry state of DNA and its binding to small, acid-soluble proteins that drastically modify the structure and photoreactivity of the nucleic acid. Herein, multiscale molecular dynamics simulations, including extended classical molecular dynamics and quantum mechanics/molecular mechanics based dynamics, are used to elucidate the coupling of electronic and structural factors that lead to this photochemical outcome. In particular, the well-described impact of the peculiar DNA environment found in spores on the favored formation of the spore photoproduct, given the small free energy barrier found for this path, is rationalized. Meanwhile, the specific organization of spore DNA precludes the photochemical path that leads to cyclobutane pyrimidine dimer formation.  相似文献   

16.
UV radiation affects human health. Human exposure to UV radiation causes a few beneficial health effects like vitamin D3 formation but it causes many detrimental health effects: sunburn, ocular damage, photoaging, immune suppression, DNA damage and skin cancer. In countries with fair-skinned populations, skin cancer is the most diagnosed of all cancers. In the United States in 2002, there were over one million new skin cancer cases. That means one out of every 285 people got skin cancer. Skin cancer of fair-skinned individuals is increasing at an alarming rate (4-6% per year) around the world and has now reached so-called "pandemic" proportions. Thus, it is important to know what UV doses people around the world get throughout their lives. This review covers how the outdoor UV doses are weighted for different biological effects, the most commonly used measuring devices for terrestrial and personal UV doses, the natural and other effects on terrestrial and personal UV doses, the time people spend outside, their ambient exposures and the terrestrial and personal UV doses of adult outdoor and indoor workers as well as children and adolescents around the world. Overall, outdoor-working adults get about 10%, while indoor-working adults and children get about 3% (2-4%) of the total available annual UV (on a horizontal plane). People's UV doses increase with increasing altitude and decreasing latitude; most indoor-working adult Europeans get 10,000-20,000 J/m2 per year, Americans get 20,000-30,000 J/m2 per year and Australians are estimated to get 20,000-50,000 J/m2 per year (excluding vacation, which can increase the dose by 30% or more).  相似文献   

17.
Abstract— -Ultraviolet effects on amoeboid cells of three strains of Dictyosrrlium discoidruin , NC-4. γs-13 and γs-18. for killing. fruiting body formation, spore formation and viability of the spores were studied.
The strain of γs-13 was more sensitive to UV light for killing than NC-4 at 10% survival. In addition. γs-13 was the most sensitive strain among the three for fruiting body formation and spore formation. The developmental process of this organism, however, showed a large resistance to UV light when compared with the killing. The spores of γs-13 formed after UV irradiation were mostly non-viable, though those of γs-18 and NC-4 were fully viable  相似文献   

18.
An analysis is made of measured ultraviolet erythemal solar radiation (UVER) data recorded during the year 2003 by the networks of the Catalan Weather Service and the Environment Department of Valencia (both on the Spanish Mediterranean coast). Results show a latitudinal variation at sea level, of 3-4% per degree and an increase with altitude of 10% per km. Based on these data the UV Index has been evaluated for the measuring stations. The maximum experimental value of the UV Index was around 9 during the summer, although higher values were recorded at two stations, one at the highest elevation and the other at the lowest latitude. The annual accumulated doses of irradiation on a horizontal plane have been presented as well as the evolution through the year in units of energy, Standard Erythemal Doses and Minimum Erythemal Doses according to different phototypes. Lastly, the UV Index forecast, determined with a multiple scattering radiative transfer model, has been analyzed. Total agreement or only one unit of difference between measured and modelled values was found in 94% of cloud-free cases.  相似文献   

19.
Abstract— Dimerization of uracil monomers in a polycrystalline state by UV radiation changes the absorption characteristics of a thin layer of the material. The change in optical density, measured by spectrophotometry in the250–400 nm range, as a function of the exposure time is evaluated in terms of the biologically effective UV dose. A statistical evaluation of a great number of uracil dosimeters irradiated with a TL01 lamp from Philips establishes the possibility of evaluating the biologically effective UV dose using a uracil dosimeter. Nonlinear regression procedures were introduced to correct the absorption spectra for contributions due to light scattering and to determine the optical density values required to calculate the UV dose expressed in HUunits. Comparison of cumulative daily doses and long-term monitoring measured by the uracil thin-layer dosimeter and a phage T7 dosimeter are given, which allow the determination of conversion factors between various biological dosimeters under different irradiation conditions.  相似文献   

20.
The reproductive cells of macroalgae are regarded as the life history stages most susceptible to various environmental stresses, including UV radiation (UVR). UVR is proposed to determine the upper depth distribution limit of macroalgae on the shore. These hypotheses were tested by UV-exposure experiments, using spores and young thalli of the eulittoral Rhodophyceae Mastocarpus stellatus and Chondrus crispus and various sublittoral brown macroalgae (Phaeophyceae) with different depth distribution from Helgoland (German Bight) and Spitsbergen (Arctic). In spores, the degree of UV-induced inhibition of photosynthesis is lower in eulittoral species and higher in sublittoral species. After UV stress, recovery of photosynthetic capacity is faster in eulittoral compared to sublittoral species. DNA damage is lowest while repair of DNA damage is highest in eulittoral compared to sublittoral species. When the negative impact of UVR prevails, spore germination is inhibited. This is observed in deep water kelp species whereas the same UVR doses do not inhibit germination of shallow water kelp species. A potential acclimation mechanism to increase UV tolerance of brown algal spores is the species-specific ability to increase the content of UV-absorbing phlorotannins in response to UV-exposure. Growth rates of young Mastocarpus and Chondrus gametophytes exposed to experimental doses of UVR are not affected while growth rates of all young kelp sporophytes exposed to UVR are significantly lowered. Furthermore, morphological UV damage in Laminaria ochroleuca includes tissue deformation, lesion, blistering and thickening of the meristematic part of the lamina. The sensitivity of young sporophytes to DNA damage is correlated with thallus thickness and their optical characteristics. Growth rate is an integrative parameter of all physiological processes in juvenile plants. UV inhibition of growth may affect the upper distribution depth limit of adult life history stages. Juveniles possess several mechanisms to minimize UVR damage and, hence, are less sensitive but at the expense of growth. The species-specific susceptibility of the early life stages of macroalgae to UVR plays an important role for the determination of zonation patterns and probably also for shaping up community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号