首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

The processability of ultrahigh molecular weight polyethylene (UHMWPE) improved by oligomer-modified calcium carbonate (CaCO3) was observed in our previous work. In order to understand the effect of oligomer-modified CaCO3 on the crystallization of UHMWPE, the non-isothermal crystallization behavior and crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3 was studied by differential scanning calorimetry in this work. Jeziorny and Mo methods were used to describe the non-isothermal crystallization kinetics of UHMWPE composites. The effect of modified filler content and cooling rate on the crystallization temperature and crystallization rate was discussed. The heterogeneous nucleation of modified CaCO3 slightly increases the crystallization temperature of UHMWPE. The crystallization enthalpy of UHMWPE composites is significantly higher than that of UHMWPE. The crystallization rate of UHMWPE composites depends on the filler contents and cooling rate.

  相似文献   

2.
Non-isothermal crystallization of MaterBi-Z (starch-polycaprolactone blend) and its nanocomposites with different clay contents (0, 2.5 and 5 mass%) was studied. The experimental data show that clay can be act both as nucleating or retarding agent depend on the clay content. Kinetic parameters obtained by using a non-linear regression method, i.e., Kamal’s model and Dietz’s modification, were able to describe the non-isothermal crystallization behavior of the studied materials. A full model that takes into account the induction and growth of the crystal during cooling under non-isothermal conditions was used to obtain a continuous cooling transformation diagrams.  相似文献   

3.
Wood flour/polypropylene composites (WPC) were prepared by melt extruding with different wood flour (WF) loadings. The non-isothermal crystallization and melting was studied with different WF loadings, for W40P60 and W40P60M6, the melting was investigated after non-isothermal and isothermal crystalline. Comparing with neat polypropylene, the melting behavior of the composites, both non-isothermally and isothermally, was investigated by differential scanning calorimetry (DSC). The results showed that WF was an effective heterogeneous nucleating agent, as evidenced by an increase in the crystallization temperature and the crystallinity for melt crystallization of PP with increasing WF content. For the non-isothermal samples, the origins of the double melting behaviors were discussed, based on the DSC results of PP. The XRD measurements confirmed that no crystalline transition existed during the non-isothermal crystallization process. With m-TMI-g-PP adding, due to compatibilization phenomenon were probably responsible for decreasing T m, X c. In the DSC scan after isothermal crystallization process, the single melting behaviors were found and each melting endotherm had a different origin.  相似文献   

4.
In this work, we studied the kinetics of mullite formation in different composites under non-isothermal conditions using DTA. Different composites based of mullite, alumina, zircon and zirconia were prepared by reaction sintering of boehmite (as alumina source) and zircon. Several mixtures were used while varying the percentage of the boehmite from 30 to 70 mass% with a step of 10. Five compositions marked as B30, B40, B50, B60 and B70 corresponding to boehmite–zircon ratios (mass%) of 30/70, 40/60, 50/50, 60/40 and 70/30 were fabricated and studied. The DTA conducted at heating rates of 10, 20 and 30 K min?1 showed an endothermic peak in all composites at about 1,603 K associated with mullite formation. The activation energies measured from non-isothermal treatments for five compositions (30, 40, 50, 60 and 70 mass% of boehmite) were 1,029, 1,085, 1,262, 1,508 and 1,321 kJ mol?1, respectively. The n values (Avrami parameter) for all compositions are larger than 2.5, the mullite crystallization of these composites is followed by three-dimensional growth.  相似文献   

5.
The effect of four nucleating agents on the crystallization of isotactic polypropylene (iPP) was studied by differential scanning calorimetry (DSC) under isothermal and non-isothermal conditions. The nucleating agents are: carbon nanofibers (CNF), carbon nanotubes (CNT), lithium benzoate and dimethyl-benzylidene sorbitol. Avrami?s model is used to analyze the isothermal crystallization kinetics of iPP. Based on the increase in crystallization temperature (T c) and the decrease in half-life time (τ½) for crystallization, the most efficient nucleating agents are the CNF and CNT, at concentrations as low as 0.001 mass%. Sorbitol and lithium benzoate show to be less efficient, while the sorbitol needs to be present at concentrations above 0.05 mass% to even act as nucleating agent.  相似文献   

6.
The crystallization kinetics and the melting behavior of PLA and PLA with talc are investigated by dynamic scanning calorimeter and optical microscopy. The polymorphic aspect of PLA was highlighted by analyzing the melting process throughout heating after isothermal crystallization. The melting process of PLA with 5 mass% talc (PLAT5) shows the same thermal transitions as for PLA alone. The thermodynamic melting temperature of PLA and PLAT5 is determined to be 167.7 °C. The effects of the temperature and the cooling rate on the crystallization kinetics of PLA are analyzed. Finally, a simple and efficient protocol is defined to model the isothermal and the non-isothermal crystallization taking into account the polymorphism of PLA. Good agreement is found between the predictions of the proposed model and the experimental results under isothermal and non-isothermal conditions.  相似文献   

7.
Non-isothermal crystallization of polyvinylalcohol-co-ethylene with different ethylene contents was studied. Several models were used to predict the crystallization behavior of these materials under non-isothermal conditions at a constant cooling rate. Kinetic parameters determined from isothermal date were employed. Experimental data were in accordance with model prediction at low cooling rate and relative degree of crystallization lower than 0.8, but it did not fit at high cooling rate. Kinetic parameters obtained by using a non-linear regression method, i.e, Kamals model and Dietzs modification, were able to describe better the non-isothermal crystallization behavior of the studied materials. The full model, that takes into account the induction and growth of the crystal during cooling under non-isothermal conditions was used to obtain a continuous cooling transformation diagrams for polyvinylalcohol -co-ethylene. Finally, non-isothermal models, coupled with the proposed expressions for induction time and kinetic constant, were used to represent the development of crystallinity during the processing of the polymer.  相似文献   

8.
Polyethylene/paraffin oil blend sheets with different molecular weights of polyethylene were prepared by thermally induced phase separation. Isothermal and non-isothermal crystallization behaviors of blend sheets were investigated by differential scanning calorimetry (DSC). Isothermal DSC curves were analyzed by Avrami equation, whereas non-isothermal DSC curves were analyzed by Jeziorny method and Mo method. Effective activation energy (ΔE) of isothermal and non-isothermal crystallization was calculated by Friedman method. Under isothermal condition, value of n in Avrami equation hovered at 2.1, and lgZ increased with the decrease of crystallization temperature. lgZ and ΔE of blend sheets with a larger molecular weight of polyethylene was smaller than that of blend sheets with smaller molecular weight. Under non-isothermal condition, value of n obtained by Jeziorny method hovered at 2.4, close to n of isothermal condition. lgZ c increased with the increase of cooling rate and decrease of molecular weight of polyethylene. ΔE of different blend sheets were close to each other. Crystal structures of blend sheets formed under non-isothermal condition were analyzed by X-ray diffraction (XRD) analysis. XRD analysis showed that molecular weight of polyethylene and cooling rate had slight influence on crystal structure and crystallinity of polyethylene/paraffin oil blend sheet.  相似文献   

9.
Plenty of thermal explosions and runaway reactions of cumene hydroperoxide (CHP) were described from 1981 to 2010 in Taiwan. Therefore, a thermal explosion accident of CHP in oxidation tower in 2010 in Taiwan was investigated because of piping breakage. In general, high concentration of CHP for thermal analysis using the calorimeter is dangerous. Therefore, a simulation method and a kinetic parameter were used to simulate thermal hazard of high concentrations of CHP only by the researcher. This study was applied to evaluate thermal hazard and to analyze storage parameters of 80 and 88 mass% CHP using three calorimeters for the oxidation tower, transportation, and 50-gallon drum. Differential scanning calorimetry (DSC) (a non-isothermal calorimeter), thermal activity monitor III (TAM III) (an isothermal calorimeter), and vent sizing package 2 (VSP2) (an adiabatic calorimeter) were employed to detect the exothermic behavior and runaway reaction model of 80 and 88 mass% CHP. Exothermic onset temperature (T 0), heat of decomposition (ΔH d), maximum temperature (T max), time to maximum rate under isothermal condition (TMRiso) (as an emergency response time), maximum pressure (P max), maximum of self-heating rate ((dT/dt)max), maximum of pressure rise rate ((dP/dt)max), half-life time (t 1/2), reaction order (n), activation energy (E a), frequency factor (A), etc., of 80 and 88 mass% CHP were applied to prevent thermal explosion and runaway reaction accident and to calculate the critical temperature (T c). Experimental results displayed that the n of 80 and 88 mass% CHP was determined to be 0.5 and the E a of 80 and 88 mass% CHP were evaluated to be 132 and 134 kJ mol?1, respectively.  相似文献   

10.
郭朝霞  于建 《高分子科学》2016,34(8):1032-1038
The effects of three types of electrically-inert fillers, calcium carbonate (CaCO3), talc and glass fiber (GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xylene adipamide) (MXD6)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivity of MXD6/MWCNT composites is significantly reduced with the addition of inert fillers due to the volume-exclusion effect that leads to increased effective concentration of MWCNTs in MXD6 matrix and also due to improved MWCNT dispersion. The crystallization temperature of MXD6 increases with the addition of MWCNTs, indicating that MWCNTs can act as nucleating agent and induce crystallization of MXD6. The incorporation of inert fillers has no further effect on crystallization behavior of MXD6, but significantly improves the storage modulus of MXD6/MWCNT composite, demonstrating that CaCO3, talc and GF filled MXD6/MWCNT composites are very promising materials with not only improved electrical property but also excellent mechanical properties.  相似文献   

11.
The non-isothermal crystallization kinetics of polyethylene (PE), PE/organic-montmorillonite (Org-MMT) composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples very well. The difference in the exponent n between PE and PE/Org-MMT nanocomposites, indicated that non-isothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PE and PE/Org-MMT composites, but the crystallization rate of PE/Org-MMT composite was faster than that of PE at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PE very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PE/Org-MMT was greatly larger than that of PE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In the present research, the isothermal and non-isothermal crystallization of polypropylene (PP) phase in PP-rich poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends was studied. The effect of nanofillers’ incorporation and specialty of organically modified montmorillonite (OMMT) and graphene, into the prepared blends on the isothermal and non-isothermal crystallization of PP phase, were investigated. Moreover, kinetic study of their isothermal crystallization process was carried out, by applying the Avrami equation. The addition of ABS to the PP matrix increased the crystallization rate of PP at 130 °C. The incorporation of OMMT in pure PP accelerated slightly the crystallization process, whereas in ABS/PP blends, it seemed to retard crystallization, due to interactions between ABS phase and organoclay. The incorporation of graphene in pure PP accelerated impressively its isothermal crystallization, while the addition of ABS in graphene/PP nanocomposite slowed down the crystallization rate of PP. The effect of ABS and nanofillers, separately or in combination, on the crystallization of PP phase was reflected on the kinetic parameters of the Avrami equation. Regarding the non-isothermal crystallization, ABS/PP blends presented higher crystallization temperature (T c) compared to pure PP. The organoclay reinforcement did not have any obvious effect on this temperature, whereas graphene caused significant increase, acting as nucleating agent. The presence of ABS to PP increased the concentration of the β-crystalline phase, reaching its maximum value at 30 mass% ABS content. The organoclay decreased the β-PP in ABS/PP blends, whereas graphene eliminated it.  相似文献   

13.
In this study, composites of high-density polyethylene (HDPE) with mesostructured cellular foam (MCF) silicas have been prepared by melt mixing and studied for the first time. Two different MCF silica analogues having different pore size were used, i.e., 12 nm (MCF-12) and 50 nm (MCF-50). The MCF content in the mesocomposites was 1, 2.5, 5, and 10 mass%. All HDPE/MCF-50 mesocomposites exhibited improved mechanical properties compared with neat HDPE, indicating that the mesocellular silica foam particles with the large mesopore size can act as efficient reinforcing agents. On the other hand, the MCF-12 silica with the smaller size mesopores induced inferior mechanical properties, mainly due to the poorer dispersion of the silica particles and the formation of large aggregates. The mesocellular silica foam particles also affected the thermal properties and the crystallization characteristics of HDPE. Crystallization of mesocomposites was faster than that of neat HDPE. Crystallization kinetics was analyzed with the Avrami equation for both isothermal and non-isothermal conditions. For isothermal crystallization, the Avrami exponent increased with increasing crystallization temperature from 2 to 3. In non-isothermal crystallization, the values of the Avrami exponent increased from 3 to 6.3 with decreasing cooling rate. Lower activation energy values of non-isothermal crystallization were calculated using the isoconversional method of Friedman, as well as using the Kissinger’s equation. Finally, the nucleation efficiency of the mesocellular silica foam particles was estimated from data associated with non-isothermal crystallization, according to the method of Dobreva.  相似文献   

14.
The non-isothermal crystallization kinetics of isotactic polypropylene (iPP) and nucleated iPP was investigated by DSC. The crystalline morphology of iPP was observed by polarized light microscopy. It was found that the crystallization rate increased with the addition of nanometer-scale calcium carbonate (nm-CaCO3) particles. The addition of dibenzylidene sorbitol (DBS) could greatly reduce the spherulite size of iPP. The crystallization temperature for the iPP with DBS was higher than for non-nucleated iPP. DBS was an effective nucleating agent for iPP. The results of measurements suggested that there was a coordinated action to the crystallization of iPP when the organic nucleating agents (DBS) and nm-CaCO3 were added to iPP together. Comparison to the modified Avrami equation and Ozawa equation, another method—Mo’s method can describe the non-isothermal crystallization behavior of iPP and nucleated iPP more satisfactorily.  相似文献   

15.
To obtain wollastonite-filled β-iPP composites, the wollastonite with β-nucleating surface (β-wollastonite) was prepared through chemical reaction between wollastonite with α-nucleating surface (α-wollastonite) and pimelic acid. The formation of calcium pimelate on the surface of wollastonite was proved using Fourier transform infrared spectrometry and scanning electron microscopy. The crystallization behavior, melting characteristics, non-isothermal crystallization kinetics, and crystalline morphologies of α- and β-wollastonite-filled iPP composites were studied by differential scanning calorimetry and polarizing optical microscopy. It is found that the crystallization peak temperatures of β-wollastonite-filled iPP composites were higher than that of α-wollastonite-filled iPP composites, which indicated that wollastonite with β-nucleating surface has stronger heterogeneous nucleation than that of wollastonite with α-nucleating surface. Although the crystallization temperatures of iPP and iPP composites decreased with increasing cooling rates, α-wollastonite-filled iPP composites mainly crystallized in α-spherulite and β-wollastonite-filled iPP composites formed β-spherulite. In addition, the spherulite size of β-wollastonite-filled iPP composites was smaller than that of α-wollastonite-filled iPP composites. Jeziorny and Mo methods were applicable to study the non-isothermal crystallization kinetics of wollastonite-filled iPP composites. The activation energy (?E) and the nucleation efficiency (EN) of non-isothermal crystallization were calculated by Kissinger method and the equation proposed by Fillon, respectively. The β-wollastonite-filled iPP composites exhibited higher crystallization rate, activation energy, and EN than that of α-wollastonite-filled iPP composites.  相似文献   

16.
The low-temperature parts of the temperature-heating rate-transformation (T-HR-T) and temperature-time transformation (T-T-T) diagrams were obtained for crystallization processes. A knowledge of the kinetic model governing crystallization is not needed because both transformation curves can be obtained from non-isothermal calorimetric experiments. The calorimetric study was performed by means of differential scanning calorimetry. The method was applied to analyse crystallization processes of Fe-Ni-based amorphous alloys prepared by melt spinning. The compositions studied were Fe40Ni40P14Si6, Fe40Ni40P10Si10 and Fe40Ni40P6Si14. A good concordance was observed between the experimental T-HR-T curves obtained by calculation and the experimental data, which verifies the reliability of the method. In the T-T-T diagrams, the agreement was good in process B1, while in processes A1 and C1 there are small differences that could be related to different crystallization products obtained in isothermal/non-isothermal experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Graphene nanoplatelets (GNP) and polyphenylene sulfide (PPS) were used as filler and matrix, respectively, to produce composites. The PPS/GNP thermal composites were prepared via a melt blending method. The effects of GNP on crystallization behavior and kinetics, morphology, and thermal properties of PPS/GNP composites were investigated. To determine the isothermal crystallization kinetics parameters and isothermal crystallization activation energy, the Avrami model was used to comparatively analyze the relevant DSC experimental data. The results show that GNP provides an obvious heterogeneous nucleation effect on PPS to accelerate the crystallization and decrease isothermal crystallization activation energy. Thermal conductivity values of PPS/GNP composites with various GNP contents revealed that GNP remarkably increases thermal conductivity of composites mainly via a layered dispersion in PPS matrix. Thermal conductivity also increased with increasing GNP content, which was further improved at elevated temperatures. The thermal conductivities of PPS composite containing 30 mass% of GNP were 1.156 and 1.350 W m?1 K?1 at 30 and 110 °C, respectively, indicating an increase of more than 3 times compared with the neat PPS.  相似文献   

18.
The effects of non-isothermal and isothermal crystallization on the formation of α- and β-phase in isotactic polypropylene (iPP) with different content of β-nucleating agent are investigated by differential scanning calorimetry (DSC). On non-isothermal crystallization, the content of β-phase and regularity of its crystals are depended on both cooling rate and the content of β-nucleating agent. The faster cooling rate is, the lower of melting peak temperature (Tmp) and crystallization peak temperature (Tcp) of α- and β-phase are. The enthalpy of fusion (∆H) of β-phase increases with cooling rate in a certain range for the sample with 0.1 wt% β-nucleating agent (G1) and decreases for that with 0.3 wt% β-nucleating agent (G3). On isothermal crystallization, the enthalpy of fusion of β-phase in G1 is higher than in G3 which is related to the efficiency of nucleation in different concentration of nucleating center in two samples.  相似文献   

19.
Biopolymer composites were prepared from poly(3-hydroxybutyrate) (PHB)/microcrystalline cellulose fiber (MCCF)/plastiziers/poly(vinyl acetate) by melt extrusion. The morphology, crystal structure, and non-isothermal crystallization of these composites were investigated by polarized optical microscopy (POM), differential scanning calorimetry, Fourier transform infrared spectrometer, and wide-angle X-ray diffraction. The results of DSC indicate that the addition of small amount of MCCF improved the crystallization rate. Non-isothermal crystallization shows that the composites 1 and 2 have lower crystallization half time (t 0 .5) than that of pure PHB. Higher MCCF contents in PHB (composite 4) lead to a decrease in the crystallization rate. POM micrographs show that the MCCF were well dispersed in the PHB matrix and served as a nucleating agent with a strong change in PHB morphology. Increasing the isothermal crystallization temperature above 120 °C, leads to the formation of banded spherulites with large regular band spacing. Decreasing the isothermal crystallization temperature below 100 °C produces more and small spherulites.  相似文献   

20.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号