首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.  相似文献   

2.
Water soluble organic compounds (WSOC) in airborne particulate matter (PM) have received considerable attention in recent years due to their abundance and their importance in atmospheric processes. The analysis of WSOC is necessary for quantifying the relative contribution of individual organic compounds to the total WSOC mass. In the present work, we evaluated the performance of a microwave-assisted extraction (MAE) method for the determination of WSOC in PM and compared the data with those of a conventional ultrasonic extraction (USE). The experimental results showed that the MAE method requires a shorter extraction time (5 min) compared to USE. The isolated water-soluble organic fraction of PM was subsequently analyzed using ion chromatography (IC) for low molecular weight organic acids. The rapid MAE method was used in conjunction with IC for the analysis of organic acids in PM samples, collected from different sources.  相似文献   

3.
Isolation of water-soluble organic matter from atmospheric aerosol   总被引:1,自引:0,他引:1  
The development of a solid phase extraction (SPE) method is presented, which is capable of isolating approx. 60% of the water-soluble organic compounds from aerosol samples. The aqueous extracts of the filter samples were acidified then passed through an SPE column. Four silica-based and two polymeric reversed phase columns were tested and similar recoveries of the organic carbon were found. The isolated organic matter was nearly free from inorganic ions, which are major constituents of atmospheric aerosol. This fraction accounted for a major part of the UV absorption above 250 nm and fluorescence activity of the aerosol extract. The precision of the method was tested by performing three parallel sample preparations with Oasis HLB columns. It was found that the relative standard deviation of the carbon content of the isolated organic matter was better than 7%, which indicated the reliability of the method. In the atmospheric aerosol research the newly developed sample preparation method facilitates the physical and chemical characterisation of water-soluble organic compounds without the interference of inorganic constituents.  相似文献   

4.
Aqueous-phase chemistry of glyoxal may play an important role in the formation of highly oxidized secondary organic aerosol (SOA) in the atmosphere. In this work, we use a novel design of photochemical reactor that allows for simultaneous photo-oxidation and atomization of a bulk solution to study the aqueous-phase OH oxidation of glyoxal. By employing both online aerosol mass spectrometry (AMS) and offline ion chromatography (IC) measurements, glyoxal and some major products including formic acid, glyoxylic acid, and oxalic acid in the reacting solution were simultaneously quantified. This is the first attempt to use AMS in kinetics studies of this type. The results illustrate the formation of highly oxidized products that likely coexist with traditional SOA materials, thus, potentially improving model predictions of organic aerosol mass loading and degree of oxidation. Formic acid is the major volatile species identified, but the atmospheric relevance of its formation chemistry needs to be further investigated. While successfully quantifying low molecular weight organic oxygenates and tentatively identifying a reaction product formed directly from glyoxal and hydrogen peroxide, comparison of the results to the offline total organic carbon (TOC) analysis clearly shows that the AMS is not able to quantitatively monitor all dissolved organics in the bulk solution. This is likely due to their high volatility or low stability in the evaporated solution droplets. This experimental approach simulates atmospheric aqueous phase processing by conducting oxidation in the bulk phase, followed by evaporation of water and volatile organics to form SOA.  相似文献   

5.
The complexity of organic composition and temporal variability of atmospheric aerosols presents an extreme analytical challenge. Comprehensive two-dimensional gas chromatography (GC x GC) has been used on time integrated filter samples to reveal the presence of thousands of individual organic compounds in aerosols, but without defining the temporal variability in composition ideal for providing information on source resolution and human exposure to specific pollutants. We hereby introduce a new instrument, 2D-TAG, which combines our in-situ thermal desorption aerosol GC (TAG) instrument with GC x GC allowing for dramatically improved separation of organics with automated measurements at hourly timescales.  相似文献   

6.
Variations in (13)C natural abundance and distribution of total C among five size and density fractions of soil organic matter, water soluble organic C (WSOC) and microbial biomass C (MBC) were investigated in the upper layer (0-20 cm) of a continuous grassland soil (CG, C(3) vegetation), a C(3)-humus soil converted to continuous maize cultivation (CM, C(4) vegetation) and a C(3)-humus soil converted to a rotation of maize cultivation and grassland (R). The amounts of WSOC and MBC were both significantly larger in the CG than in the CM and the R. In the three soils, WSOC was depleted while MBC was enriched in (13)C as compared with whole soil C. The relative contributions to the total C content of C stored in the macro-organic matter and in the size fraction 50-150 microm decreased with decreasing total C contents in the order CG > R > CM, while the relative contribution of C associated with the clay- and silt-sized fraction <50 microm increased. This reflects a greater stability and physical protection against microbial degradation associated with soil disruption (tillage) of the clay- and silt-associated organic C, in relation to the organic C in larger size fractions. The size and density fractions from the CG soil showed significant differences in (13)C enrichment, indicating different degrees of microbial degradation and stability of soil organic C associated with physically different soil organic matter (SOM) fractions. Delta(13)C analysis of the size and density fractions from CM and R soils reflected a decreasing turnover rate of soil organic C with increasing density among the macro-organic matter fractions and with decreasing particle size.  相似文献   

7.
Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO(x) concentrations as well as temperature, humidity, and particle acidity. Such knowledge should be useful for interpreting the results of laboratory and field studies and for developing atmospheric chemistry models. A number of recommendations for future research are also presented.  相似文献   

8.
Sin DW  Fung WH  Lam CH 《The Analyst》2002,127(5):614-622
A solvent extraction-gas chromatographic method was developed for the measurement of four classes of solvent-extractable organic compounds (SEOC), viz., aliphatic hydrocarbons, polynuclear aromatic hydrocarbons, fatty acids and alkanols, in ambient carbonaceous aerosols. The selectivity and recovery of the method using different solvents commonly used in the analysis of SEOC was evaluated. The composition of SEOC in aerosol and urban dust samples was found to vary with the choice of solvent. Such variation was not observed in filters spiked with standards of SEOC. The developed method was validated by the analysis of reference urban dust SRM 1649a from the National Institute of Standards and Technology. The concentrations of selected polynuclear aromatic hydrocarbons in the reference dust were found to fall within the certified and reference concentrations. The thermal characteristics of aerosol samples collected in an urban area of Hong Kong and the four classes of identified SEOC were also studied using a thermal optical transmittance (TOT) method as specified in NIOSH Method 5040. Correlations were made to compare the method-dependent SEOC content obtained by the solvent extraction method and the results for total carbon, organic carbon and elemental carbon obtained by the TOT method.  相似文献   

9.
The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong influence of the biodiesel content on the nature of the particulate organic material.  相似文献   

10.
A method for the automated (13)C analysis of dissolved inorganic and organic carbon species has been developed to operate on a continuous-flow isotope ratio mass spectrometer (CF-IRMS). For natural and anthropogenic carbon species, the (13)C stable isotope has proven to be an excellent environmental tracer. Analytical performance tests were carried out on various organic compounds from easily oxidisable (sugar) to difficult (humic acid). A set of natural samples was also analysed to confirm the flexibility of the system. Analytical precision (2sigma) is typically <0.20 per thousand with sample reproducibility from 0.10-0.35 per thousand depending on reactivity of material. We believe this to be the first successful use of a total organic carbon (TOC) analyser for both dissolved inorganic and, specifically, dissolved organic species for (13)C stable isotope analysis in an automated CF-IRMS system. Routine analysis is achieved fairly quickly, is relatively simple with little or no sample manipulation, and will allow new and exciting studies for stable isotope research in both natural abundance and organic tracer studies not easily achieved before.  相似文献   

11.
A method for studying PCB desorption behaviour from sediments using supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) is presented. Four sediments were investigated and extracted with supercritical carbon dioxide employing increasingly harsher extraction conditions ranging from 40°C and 12?MPa to 100°C and 36.5?MPa. To ensure quantitative extractions, the remaining SFE residues were also extracted with PLE. Resulting profiles identified at least three different PCB fractions within the four sediments. Furthermore, a distinct fraction was obtained with extraction for 2?h at 40°C and 36.5?MPa. This fraction has previously been found to correlate well with bioavailable fractions. The dependency of this fraction on sediment total organic carbon (TOC) was investigated, both for sediments examined in this study as well as for previously reported values using the same extraction conditions. It was found that TOC does not correlate to selective SFE, which indicates that the use of TOC to predict bioavailability is questionable.  相似文献   

12.
Practically all the conventional chromatographic techniques are used in the characterization of the highly complex mixtures of organic compounds occurring in fuels, heavy fractions, and crude oils. This paper surveys the techniques employed for class determination, preparative fractionation of the main classes, and determination of subgroups after class fractionation.  相似文献   

13.
Caseinomacropeptide (CMP), a heterogeneous group of peptides regarding the degree of glycosylation and phosphorylation, has so far not been effectively fractionated into its two major fractions: the glycosylated gCMP and the non-glycosylated aCMP. Therefore, an anion-exchange chromatography (AEC) process for the fractionation of CMP in those two fractions was developed and optimized. Furthermore, the method was applied to compare membrane adsorption chromatography (MAC) devices with classical bead-based column chromatography. It was shown that MAC devices can separate gCMP from aCMP, however, at a lower level of binding capacity and chromatographic resolution compared to classical chromatography. On the other hand, a fractionation is achieved at a four times faster separation speed.  相似文献   

14.
A new application for the quantitative and isotopic analyses of dissolved inorganic and dissolved organic carbon compounds has been developed. Dissolved organic matter (DOM) in natural water samples can be separated on a high-performance liquid chromatography (HPLC) column and collected as fractions. Each discrete fraction can then be analyzed using the technique of St-Jean (Rapid Commun. Mass Spectrom. 2003; 17: 419-428) with a total inorganic carbon/total organic carbon (TIC/TOC) analyzer interfaced with a continuous-flow isotope ratio mass spectrometer. Experimental data using short-chain fatty acid standards (formic, acetic, and propionic acids) show that fraction recoveries of 100% are possible and that sample integrity is maintained. 13C-isotopic analyses of products prior to and subsequent to extraction and collection show no isotopic effects associated with the methodology, and errors are well within the accepted analytical uncertainty of the IRMS. Comparison of data from pure standards and organic-rich natural waters shows that quantitative analyses still need to be done with standards that more closely imitate the matrices of the samples, in order to acquire an appropriate calibration curve. Injections of organic-rich matrices on the HPLC column did not affect fraction recovery, nor did they create high background of partially retained organic compounds slowly released from the HPLC column, and hence 13C-isotopic results are relatively unaffected. The specific limitation on this methodology is the required use of carbon-free carrier solvents due to potential memory effects associated with the TIC/TOC analyzer. Further developments of this application could make routine compound-specific isotopic analyses (CSIA) for a wider range of organic materials possible.  相似文献   

15.
Recently, it has been proposed that organic aerosol particles in the atmosphere can exist in an amorphous semi-solid or solid (i.e. glassy) state. In this perspective, we analyse and discuss the formation and properties of amorphous semi-solids and glasses from organic liquids. Based on a systematic survey of a wide range of organic compounds, we present estimates for the glass forming properties of atmospheric secondary organic aerosol (SOA). In particular we investigate the dependence of the glass transition temperature T(g) upon various molecular properties such as the compounds' melting temperature, their molar mass, and their atomic oxygen-to-carbon ratios (O:C ratios). Also the effects of mixing different compounds and the effects of hygroscopic water uptake depending on ambient relative humidity are investigated. In addition to the effects of temperature, we suggest that molar mass and water content are much more important than the O:C ratio for characterizing whether an organic aerosol particle is in a liquid, semi-solid, or glassy state. Moreover, we show how the viscosity in liquid, semi-solid and glassy states affect the diffusivity of those molecules constituting the organic matrix as well as that of guest molecules such as water or oxidants, and we discuss the implications for atmospheric multi-phase processes. Finally, we assess the current state of knowledge and the level of scientific understanding, and we propose avenues for future studies to resolve existing uncertainties.  相似文献   

16.
This work describes the separation of acidic, basic and neutral organic compounds as well as inorganic anions in a single run by capillary electrochromatography employing a stationary phase which exhibits both strong anion-exchange and reversed-phase chromatographic characteristics. The positive surface charge of this stationary phase provided a substantial anodic electroosmotic flow. The analytes were separated by a mixed-mode mechanism which comprised chromatographic interactions (hydrophobic interactions, ion-exchange) as well as electrophoretic migration. The influence of ion-exchange and hydrophobic interactions on the retention/migration of the analytes could be manipulated by varying the concentration of a competing ion and/or the amount of organic modifier present in the background electrolyte. Additionally the effects of pH changes on both the chromatographic interactions as well as the electrophoretic migration of the analytes were investigated.  相似文献   

17.
The results are reported of a range of laboratory chromatographic fractionation experiments with synthetic model compounds and a petroleum pyrrolic nitrogen fraction. Reversed phase separation of pyrrolic nitrogen compounds was governed mainly by the number of carbon atoms in the molecule, with little selectivity toward different positional isomers, whereas normal phase separation of the compounds could be explained in terms of steric effects related to alkylation position. Comparison of experimental results from model compounds with observations made previously using sets of natural samples taken from sedimentary basins clearly suggests adsorptive interactions between organic and mineral phases are involved in the compositional fractionation of pyrrolic nitrogen compounds in petroleum during migration. Detailed studies of the effects of petroleum migration on the molecular distribution of petroleum pyrrolic nitrogen compounds may provide useful, quantifiable, migration-related geochemical parameters.  相似文献   

18.
Gas antisolvent precipitation is a particle formation technique, when typically pressurized carbon dioxide is added to an organic solution resulting in immediate and high oversaturation and precipitation of fine particles. Provided that a reasonable share of the originally dissolved material remains dissolved in the carbon dioxide – organic mixed solvent, these components can be extracted during the washing phase. This method is called gas antisolvent fractionation. Gas antisolvent fractionation has been applied for the first time to enantiomeric enrichment of non-racemic mixtures, and demonstrated on the example of chlorinated mandelic acid derivatives. Due to self-disproportionation of enantiomers, the precipitated solid and the extracted fractions have different enantiomeric excesses if gas antisolvent fractionation is carried out on a non-racemic mixture. However, there is a limit in the enantiomeric excess (ee) that can be achieved correlating strongly with the atmospheric melting eutectic behavior of the compounds. Thus, if initial enantiomeric mixtures have a higher than eutectic ee, a >99% ee can be reached in the crystalline product. The strong correlation between the high-pressure experiments and the atmospheric melting eutectic behavior suggest that despite the very large oversaturation during the antisolvent precipitation, the composition of the products (i.e., the crystalline and the extracted phases) is thermodynamically determined. Technological advantages such as short operational time, or the possibility of controlling the crystal morphology suggest that the development of an efficient technique of enantiomeric purification is possible based on gas antisolvent fractionation.  相似文献   

19.
The chromatographic behavior of some organic tellurium compounds (OTCs) was studied under the conditions of high-performance liquid chromatography with mass spectrometric detection. The retention characteristics (retention factor, relative retention, and differential molar Gibbs energy difference) of the compounds were obtained under the conditions of gradient elution reversed-phase liquid chromatography. The chemical ionization mass spectra of OTCs at atmospheric pressure were considered. It was shown that there was a relation between the structure of the compounds studied and their chromatographic retention.  相似文献   

20.
Atmospheric aerosol particles of primary or secondary, biogenic or anthropogenic origin are highly complex samples of changing composition in time and space. To assess their effects on climate or human health, the size-dependent chemical composition of these ubiquitous atmospheric constituents must be known. The development of novel analytical methods has enabled more detailed characterization of the organic composition of aerosols. This review gives an overview of the methods used in the chemical characterization of atmospheric aerosol particles, with a focus on mass-spectrometry techniques for organic compounds, either alone or in combination with chromatographic separation. Off-line, on-site, and on-line methods are covered, and the advantages and limitations of the different methods are discussed. The main emphasis is on methods used for detailed characterization of the composition of the organic compounds in aerosol particles. We address and summarize the current state of analytical methods used in aerosol research and discuss the importance of developing novel sampling strategies and analytical instrumentation.
Graphical Abstract Challenges in the atmospheric aerosol analytics
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号