首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclophanes of perylene tetracarboxylic diimides (PDIs) with different substituents at the bay positions, namely four phenoxy groups at the 1,7-positions (1), four piperidinyl groups at the 1,7-positions (2), and eight phenoxy groups at the 1,6,7,12-positions (3) of the two PDI rings, have been synthesized by the condensation of perylene dianhydride with amine in a dilute solution. These novel cyclophanes were characterized by (1)H NMR spectroscopy, MALDI-TOF mass spectrometry, electronic absorption spectroscopy, and elemental analysis. The conformational isomers of cyclophanes substituted with four piperidinyl groups at the 1,7-positions (2 a and 2 b) were successfully separated by preparative TLC. The main absorption band of the cyclophanes shifts significantly to the higher energy side in comparison with their monomeric counterparts, which indicates significant pi-pi interaction between the PDI units in the cyclophanes. Nevertheless, both the electronic absorption and fluorescence spectra of the cyclophanes were found to change along with the number and nature of the side groups at the bay positions of the PDI ring. Time-dependent DFT calculations on the conformational isomers 2 a and 2 b reproduce well their experimental electronic absorption spectra. Electrochemical studies reveal that the first oxidation and reduction potentials of the PDI ring in the cyclophanes increase significantly compared with those of the corresponding monomeric counterparts, in line with the change in the energy of the HOMO and LUMO according to the theoretical calculations.  相似文献   

2.
A series of five novel sandwich-type mixed (phthalocyaninato)(porphyrinato) europium triple-decker complexes with different numbers of hydroxyl groups at the meso-substituted phenyl groups of porphyrin ligand 1-5 have been designed, synthesized, and characterized. Their self-assembly properties, in particular the effects of the number and positions of hydroxyl groups on the morphology of self-assembled nanostructures of these triple-decker complexes, have been comparatively and systematically studied. Competition and cooperation between the intermolecular pi-pi interaction and hydrogen bonding in the direction perpendicular to the pi-pi interaction direction for different compounds were revealed to result in nanostructures with a different morphology from nanoleafs for 1, nanoribbons for 2, nanosheets for 3, and curved nanosheets for 4 and to spherical shapes for 5. The IR and X-ray diffraction (XRD) results reveal that, in the nanostructures of triple-decker 2 as well as 3-5, a dimeric supramolecular structure was formed through an intermolecular hydrogen bond between two triple-decker molecules, which as the building block self-assembles into the target nanostructures. Electronic absorption spectroscopic results on the self-assembled nanostructures reveal the H-aggregate nature in the nanoleafs and nanoribbons formed from triple-deckers 1 and 2 due to the dominant pi-pi intermolecular interaction between triple-decker molecules, but the J-aggregate nature in the curved nanosheets and spherical shapes of 4 and 5 depending on the dominant hydrogen bonding interaction in cooperation with pi-pi interaction among the triple-decker molecules. Electronic absorption and XRD investigation clearly reveal the decrease in the pi-pi interaction and increase in the hydrogen bonding interaction among triple-decker molecules in the nanostructures along with the increase of hydroxyl number in the order of 1-5. The present result appears to represent the first effort toward realization of controlling and tuning the morphology of self-assembled nanostructures of sandwich tetrapyrrole rare earth complexes through molecular design and synthesis.  相似文献   

3.
Three perylene tetracarboxylic diimide (PDI) trimers substituted with different side groups at the bay positions were prepared with the triazine ring as a linkage. The free rotation of C-N-C bonds between the triazine ring and the PDI unit provide these molecules with some flexibility. The UV-vis absorption and fluorescence spectra of these three compounds show different concentration-dependent behaviors, which depend on the side groups at the bay positions. Significant aggregation in organic solvents was revealed by the electronic absorption and emission spectra as well as the fluorescence quantum yield calculation. The aggregation behavior of these compounds in the solid state were investigated by X-ray diffraction (XRD), and the morphology of the aggregates was examined by atomic force microscopy (AFM). The aggregation of trimer 1 with two phenoxy groups at the 1 and 7 positions results in long nanofibers whereas trimers 2 and 3 with dipiperidinyl groups or tetraphenoxyl groups at the bay positions form only particles. The results of this research revealed that PDI trimers with flexible structures can also self-assemble into large ordered aggregates such as those with rigid structure. This information is believed to be useful in the design of novel nanoorganic materials.  相似文献   

4.
We report here the synthesis and self-assembly of a series of three molecules with dendron rodcoil architecture that contain conjugated segments of oligo(thiophene), oligo(phenylene-vinylene), and oligo(phenylene). Despite their structural differences, all three molecules yield similar self-assembled structures. Electron and atomic force microscopy reveals the self-assembly of the molecules into high aspect ratio ribbon-like nanostructures which at low concentrations induce gelation in nonpolar solvent. Self-assembly results in a blue-shifted absorption spectrum and a red-shifted, quenched fluorescence spectrum, indicating aggregation of the conjugated segments within the ribbon-like structures. The assembly of these molecules into one-dimensional nanostructures is a route to pi-pi stacked supramolecular polymers for organic electronic functions. In the oligo(thiophene) derivative, self-assembly leads to a 3 orders of magnitude increase in the conductivity of iodine-doped films due to self-assembly. We also found that electric field alignment of these supramolecular assemblies can be used to create arrays of self-assembled nanowires on a device substrate.  相似文献   

5.
A series of three perylene tetracarboxylic acid bisimide dyes 3a-c bearing phenoxy substituents at the four bay positions of the perylene core were synthesized and their complexation behavior to complementary ditopic dialkyl melamines 8a-c was investigated. Binding constants and Gibbs binding energies for the hydrogen bonds between the imide and the complementary melamine moiety have been determined in several solvents by NMR and UV/Vis titration experiments with monotopic model compounds 5 and 9. The effects of the solvent polarity and specific solvent-solute interactions on the degree of polymerization of (3 x 8)n are discussed, and a general formula to estimate the chain length of [AA-BB]n nylon-type supramolecular polymers is derived. In addition to the formation of a hydrogen-bonded supramolecular chain. pi-pi interactions were observed for perylene bisimide-melamine assemblies 3b x 8b and 3b x 8c in aliphatic solvents. The orthogonal nature of hydrogen bonding and pi-pi interactions leads to three-dimensional growth yielding large-sized aggregates already in dilute solution. On suitable substrates, densely intertwined networks of nano- to mesoscopic strands are formed which have been investigated by electron microscopy, confocal fluorescence microscopy and optical polarization microscopy. The high fluorescence and excellent photostability of these superstructures is promising for future studies on energy migration and artificial light harvesting at the nano- and mesoscopic length scale.  相似文献   

6.
Micrometer-long nanobelt and nanowires from deposition of perylenediimide (PTCDI) and naphthalenediimide (NPDI) in glass substrates from the gas phase were demonstrated. The electron diffraction pattern of PTCDI shows that the PTCDI molecules are oriented with their long axis perpendicular to the belt and the pi-pi stacking direction parallel to the belt. No crystal structure of the NPDI nanowires was observed. This is a new strategy to assemble organic molecules to nanostructures, typically for those having very low solubility in solvents. The approach would completely eliminate the effect of side chains.  相似文献   

7.
Intermolecular interactions involving pi-pi interaction and hydrogen bonding are used to create one-dimensional molecular nanostructures of hexasubstituted aromatics. Site-selective steady state fluorescence, time-resolved fluorescence, scanning electron microscopy, and atomic force microscopy measurements detail the intermolecular interactions that drive the aromatic molecules to self-assemble in solution to form well-ordered columnar stacks. These nanostructures, formed in solution, vary in their number, size, and structure depending on the solvent used. In addition, our results indicate that the substituents/ side groups and the proper choice of the solvent can be used to tune the intermolecular interactions. The 1D stacks and their aggregates can be easily transferred by solution casting, thus allowing a simple preparation of molecular nanostructures on different surfaces.  相似文献   

8.
Effect of side-chain substitutions on the morphology of self-assembly of perylene diimide molecules has been studied with two derivatives modified with distinctly different side-chains, N,N'-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (DD-PTCDI) and N,N'-di(nonyldecyl)-perylene-3,4,9,10-tetracarboxylic diimide (ND-PTCDI). Due to the different side-chain interference, the self-assembly of the two molecules results in totally different morphologies in aggregate: one-dimensional (1D) nanobelt vs zero-dimensional (0D) nanoparticle. The size, shape, and topography of the self-assemblies were extensively characterized by a variety of microscopies including SEM, TEM, AFM, and fluorescence microscopy. The distinct morphologies of self-assembly have been obtained from both the solution-based processing and surface-supported solvent-vapor annealing. The nanobelts of DD-PTCDI fabricated in solution can feasibly be transferred to both polar (e.g., glass) and nonpolar (e.g., carbon) surfaces, implying the high stability of the molecular assembly (due to the strong pi-pi stacking). The side-chain-dependent molecular interaction was comparatively investigated using various spectrometries including UV-vis absorption, fluorescence, X-ray diffraction, and differential scanning calorimetry. Compared to the emission of ND-PTCDI aggregate, the emission of DD-PTCDI aggregate was significantly red-shifted (ca. 30 nm) and the emission quantum yield decreased about three times, primarily due to the more favorable molecular stacking for DD-PTCID. Moreover, the aggregate of DD-PTCDI shows a pronounced absorption band at the longer wavelength, whereas the absorption of ND-PTCDI aggregate is not significant in the same wavelength region. These optical spectral observations are reminiscent of the previous theoretical investigation on the side-chain-modulated electronic properties of PTCDI assembly.  相似文献   

9.
A series of highly soluble and fluorescent core-twisted perylene bisimide dyes (PBIs) 3 a-f with different substituents at the bay area (1,6,7,12 positions of the perylene core) were synthesized and fully characterized by (1)H NMR, UV/Vis spectroscopy, MS spectrometry, and elemental analysis. The pi-pi aggregation properties of these new functional dyes were investigated in detail both in solution and in condensed phase by UV/Vis and fluorescence spectroscopy, vapor pressure osmometry (VPO), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction. Concentration-dependent UV/Vis measurements and VPO analysis revealed that these core-twisted pi-conjugated systems show distinct self-dimerization equilibria in apolar solvent methylcyclohexane (MCH) with dimerization constants between 1.3x10(4) and 30 M(-1). The photoluminescence spectra of the dimers of PBIs 3 a-f exhibit bathochromic shifts of quite different magnitude which could be attributed to different longitudinal or rotational offsets between the dyes as well as differences in the respective pi-pi stacking distance. In condensed state, quite a few of these PBIs form luminescent rectangular or hexagonal columnar liquid crystalline phases with low isotropization temperatures. The effects of the distortion of the pi systems on their pi-pi stacking and the optical properties of the resultant stacks in solution and in LC phases have been explored in detail. In one case (3 a) a particularly interesting phase change from crystalline into liquid crystalline could be observed upon annealing that was accompanied by a transformation from non-fluorescent H-type into strongly fluorescent J-type packing of the dyes.  相似文献   

10.
A rational approach to the design of supramolecular organogels of all-trans oligo(p-phenylene vinylene) (OPV) derivatives, a class of well-known organic semiconductor precursors, is reported. Self-assembly of these molecules induced gelation of hydrocarbon solvents at low concentrations (<1 mM), resulting in high aspect ratio nanostructures. Electron microscopy and atomic force microscopy (AFM) studies revealed twisted and entangled supramolecular tapes of an average of 50-200 nm in width, 12-20 nm in thickness, and several micrometers in length. The hierarchical growth of the entangled tapes and the consequent gelation is attributed to the lamellar-type packing of the molecules, facilitated by cooperative hydrogen bonding, pi stacking, and van der Waals interactions between the OPV units. Gelation of OPVs induced remarkable changes in the absorption and emission properties, which indicated strong electronic interaction in the aggregated chromophores. Comparison of the absorption and emission spectra in the gel form and in the solid film indicated a similar chromophore organization in both phases. The presence of self-assembled aggregates of OPVs was confirmed by solvent- and temperature-dependent changes in the absorption and emission properties, and by selective excitation experiments. This is the first detailed report of the gelation-induced formation of OPV nanotapes, assisted by weak, nondirectional hydrogen-bonding motifs and pi-pi stacking. These findings may provide opportunities for the design of a new class of functional soft materials and nanoarchitectures, based on pi-conjugated organic semiconductor-type molecules, thereby enabling the manipulation of their optical properties.  相似文献   

11.
We have investigated the ordered phases of the perylene derivatives perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) and the imide analogue PTCDI on the Ag-Si(111)square root(3) x square root(3)R30 degrees surface using scanning tunneling microscopy. We find that PTCDA forms square, hexagonal, and herringbone phases, which coexist on the surface. The existence of a square phase on a hexagonal surface is of particular interest and is a result of a near commensurability between the molecular dimensions and the surface lattice. Contrast variations across the square islands arise from PTCDA molecules binding to different sites on the surface. PTCDI on Ag-Si(111)square root(3) x square root(3)R30 degrees forms extended rows, as well as two-dimensional islands, both of which are stabilized by hydrogen bonding mediated by the presence of imide groups. We present models for the molecular arrangements in all these phases and highlight the role of hydrogen bonding in controlling this order.  相似文献   

12.
取代基对苯腈类低聚物几何及电子特征的影响   总被引:1,自引:1,他引:0  
用半经验量化计算研究了一系列苯腈类低聚合物的几何结构及其电子特征。苯腈类低聚合物几何结构的计算采用半经验量子化学计算和分子力学构象分析相结合的方法,而电子特征则的计算采用ZINDO/S-CI方法。取代基包括甲氧基、甲基、羟基、氨基、氟和硝基。它们在苯环上可以采用邻位、间位和对位三个取代位置。计算结果表明,不同的基团在苯环上采用不同的取代位置时,低聚物的构象会存在一定的差别,而且电性会随着基团的得失  相似文献   

13.
The diimide perylene motif exhibits a dramatic intensity reversal between the 0 --> 0 and 0 --> 1 vibronic bands upon pi-pi stacking; this distinct spectral property has previously been used to measure folding dynamics in covalently bound oligomers and synthetic biological hybrid foldamers. It is also used as a tool to assess organization of the pi-stacking, indicating the presence of H- or J-aggregation. The zeroth-order exciton model, often used to describe the optical properties of chromophoric aggregates, is solely a transition dipole coupling scheme, which ignores the explicit electronic structure of the system as well as vibrational coupling to the electronic transition. We have therefore examined the optical properties of gas-phase perylene tetracarboxylic diimide (PTCDI) and its chromophoric dimer as a function of conformation to relate the excited-state distributions predicted by exciton theory with that of time-dependent density functional theory (TDDFT). Using ground- and excited-state geometries, the Franck-Condon (FC) factors for the lowest energy molecular nature electronic transition have been calculated and the origin of the intensity reversal of 0 --> 0 and 0 --> 1 vibronic bands has been proposed.  相似文献   

14.
A propeller-shaped perylene diimide trimer was synthesized and a simple evaporation method was used for the self-organization of trimer molecules into fluorescent nanofibers. The sizes of these fibers-from 4 to 150 nm in diameter-were measured by atomic force microscopy and can be controlled by adjusting the concentration of the initial solution. The aspect ratios (length/height) are around 500. The plane of the trimer was determined by polarized scanning confocal microscopy to be perpendicular to the axis of the fibers, in agreement with molecular mechanics calculations. UV/vis and NMR spectroscopies were used to monitor concentration-dependent pi-pi stacking in solution. Single-fiber fluorescence imaging and spectroscopy were performed using a total internal reflection fluorescence microscope equipped with a digital color camera and imaging CCD spectrometer. Strongly red-shifted fluorescence from these fibers indicates a high degree of electronic delocalization, and breaking up this delocalization by photobleaching blue-shifts the emission toward that of an isolated noninteracting molecule. The delocalization along these nanofibers and the ability to study the electronic structure using fluorescence make them potentially useful in nanoscale devices, such as field effect transistors and photoconductors.  相似文献   

15.
We describe the synthesis, supramolecular ordering on surfaces and in solution, and photophysical characterization of OPV4UT-PERY, an oligo(p-phenylenevinylene) (OPV) with a covalently attached perylene bisimide moiety. In chloroform, the molecule forms dimers through quadruple hydrogen bonding of the ureido-s-triazine array. This is supported by scanning tunneling microscopy (STM) studies, which reveal dimer formation at the liquid (1,2,4-trichlorobenzene)/solid (graphite) interface. Moreover, contrast reversal in bias-dependent STM imaging provides information on the ordering and different electronic properties of the oligo(p-phenylenevinylene) and perylene bisimide moieties. In dodecane, the molecule self-assembles into H-type aggregates that are still soluble as a result of the hydrophobic shell formed by the dodecyloxy wedges. The donor-acceptor molecule is characterized by efficient energy transfer from the photoexcited OPV to the perylene bisimide. Mixed assemblies with analogous OPVs lacking the perylene bisimide unit have been prepared in dodecane solution and energy transfer to the incorporated perylene bisimides has been studied by fluorescence spectroscopy.  相似文献   

16.
Assembly and characterization of novel hydrogen-bond-induced nanoscale rods   总被引:3,自引:0,他引:3  
A class of bis-urea compounds with perylene bisimide was synthesized and characterized successfully. (1)H NMR and fluorescence spectra confirmed that strong hydrogen-bonding interactions between neighboring urea groups were formed. Interestingly, the photocurrent measurement showed that the self-assembled films of bis-urea compounds could produce steady and rapid anodic photocurrent responses. The TEM images indicated that well-defined nanoscale rods with uniform diameter distribution could be fabricated by self-assembly of hydrogen-bonding interactions and pi-pi stacking interactions of perylene rings.  相似文献   

17.
This review focuses on the molecular design and self-assembly of a new class of crowded aromatics that form 1-D nanostructures via hydrogen bonding and pi-pi interactions. These molecules have a permanent dipole moment that sums as the subunits self assemble into molecular stacks. The assembly of these molecular stacks can be directed with electric fields. Depending on the nature of the side-chains, molecules can obtain the face-on or edge-on orientation upon the deposition onto a surface via spin cast technique. Site-selective steady state fluorescence, time-resolved fluorescence, and various types of scanning probe microscopy measurements detail the intermolecular interactions that drive the aromatic molecules to self-assemble in solution to form well-ordered columnar stacks. These nanostructures, formed in solution, vary in their number, size, and structure depending on the functional groups, solvent, and concentration used. Thus, the substituents/side-groups and the proper choice of the solvent can be used to tune the intermolecular interactions. The 1-D stacks and their aggregates can be easily transferred by solution casting, thus allowing a simple preparation of molecular nanostructures on different surfaces.  相似文献   

18.
High-quality quantum-mechanical methods are used to examine how substituents tune pi-pi interactions between monosubstituted benzene dimers in parallel-displaced geometries. The present study focuses on the effect of the substituent across entire potential energy curves. Substituent effects are examined in terms of the fundamental components of the interaction (electrostatics, exchange-repulsion, dispersion and induction) through the use of symmetry-adapted perturbation theory. Both second-order M?ller-Plesset perturbation theory (MP2) with a truncated aug-cc-pVDZ' basis and spin-component-scaled MP2 (SCS-MP2) with the aug-cc-pVTZ basis are found to mimic closely estimates of coupled-cluster with perturbative triples [CCSD(T)] in an aug-cc-pVTZ basis. Substituents can have a significant effect on the electronic structure of the pi cloud of an aromatic ring, leading to marked changes in the pi-pi interaction. Moreover, there can also be significant direct interactions between a substituent on one ring and the pi-cloud of the other ring.  相似文献   

19.
《化学:亚洲杂志》2017,12(21):2827-2833
The effect of the length of linear alkyl chains substituted at imine positions on the assembly of tetrachlorinated perylene bisimides ( 1 : PBI with −C6H13; 2 : PBI with −C12H25) has been investigated. Solvent‐induced assembly was performed in solutions of THF and methanol with varying volume ratios. Morphological (SEM, AFM, and TEM) and spectral (UV/Vis, fluorescence, FTIR, and XRD) methods were used to characterize the assembled nanostructures and the molecular arrangement in the aggregates. It was found that uniform structures could be obtained for both molecules in solutions with a high ratio of methanol. PBI 1 formed rigid nanosheets, whereas 2 assembled into longer nanostripes with a high ratio of length to width. On combining the morphological data with the spectral data, it was suggested that π–π stacking predominated in assemblies of 1 , and the synergetic effect of van der Waals interactions from the long alkyl chains and π–π stacking between neighboring building blocks facilitated the growth of the long‐range‐ordered nanostructures of 2 . By changing the linear chain length, the hierarchical assembly of PBIs modified on bay positions could be manipulated effectively.  相似文献   

20.
We report the dispersion and scanning tunneling microscopy (STM) characterization of iso-lated Au-CdSe nanohybrids on atomically flat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号