首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Based upon a further extended tanh method [Phys. Lett. A307 (2003) 269; Chaos, Solitons and Fractals 17 (2003) 669] and the symbolic computation system, Maple, we consider the (2 1)-dimensional dispersive long waveequations. We obtain many new solutions of the equation. These solutions contain solitomlike solutions, periodic form solutions, and some rational solutions.  相似文献   

2.
WEN  Xiao-Yong 《理论物理通讯》2009,51(5):789-793
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.  相似文献   

3.
By means of two different Riccati equations with different parameters as subequation in the components of finite rational expansion method, new complexiton solutions for the (1+1)-dimensional dispersive long wave equation are successfully constructed, which include various combination of trigonometric periodic and hyperbolic function solutions, various combination of trigonometric periodic and rational function solutions, and various combination of hyperbolic and rational function solutions.  相似文献   

4.
With the help of an extended mapping approach, a new type of variable separation excitation with three arbitrary functions of the (2+1)-dimensional dispersive long-water wave system (DLW) is derived. Based on the derived variable separation excitation, abundant non-propagating solitons such as dromion, ring, peakon, and compacton etc. are revealed by selecting appropriate functions in this paper.  相似文献   

5.
In this letter, starting from a B\"{a}cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.  相似文献   

6.
Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e.,the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.  相似文献   

7.
After generalizing the Clarkson-Kruskal direct similarity reduction ansatz, one can obtain various newtypes of reduction equations. Especially, some lower-dimensional turbulent systems or chaotic systems may be obtainedfrom the general form of the similarity reductions of a higher-dimensional Lax integrable model. Furthermore, anarbitrary three-order quasi-linear equation, which includes the Korteweg de-Vries Burgers equation and the generalLorenz equation as two special cases, has been obtained from the reductions of the (2+1)-dimensional dispersive longwave equation system. Some types of periodic and chaotic solutions of the system are also discussed.  相似文献   

8.
A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2 1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.  相似文献   

9.
In this work, we reveal a novel phenomenon that the localized coherent structures of some (2 1)-dimensional physical models possess chaotic and fractal behaviors. To clarify these interesting phenomena, we take the (2 l)-dimensional modified dispersive water-wave system as a concrete example. Starting from a variable separation approach,a general variable separation solution of this system is derived. Besides the stable located coherent soliton excitations like dromions, lumps, rings, peakons, and oscillating soliton excitations, some new excitations with chaotic and fractal behaviors are derived by introducing some types of lower dimensional chaotic and fractal patterns.  相似文献   

10.
Using a Backlund transformation and the variable separation approach, we find there exist abundant localized coherent structures for the (2 + 1)-dimensional Broer-Kaup-Kupershmidt (BKK) system. The abundance of the localized structures for the model is introduced by the entrance of an arbitrary function of the seed solution. For some specialselections of the arbitrary function, it is shown that the localized structures of the BKK equation may be dromions, lumps, ring solitons, peakons, or fractal solitons etc.  相似文献   

11.
In this work, we reveal a novel phenomenon that the localized coherent structures of some (2 1 )-dimensionalphysical models possess chaotic and fractal behaviors. To clarify these interesting phenomena, we take the (2 1)-dimensional modified dispersive water-wave system as a concrete example. Starting from a variable separation approach,a general variable separation solution of this system is derived. Besides the stable localized coherent soliton excitationslike dromions, lumps, rings, peakons, and oscillating soliton excitations, some new excitations with chaotic and fractalbehaviors are derived by introducing some types of lower dimensional chaotic and fractal patterns.  相似文献   

12.
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.  相似文献   

13.
In this Letter, using Ba^ecklund transformation and the new variable separation approach, we find a new general solution to the (3 1)-dimensional Burgers equation. The form of the universal formula obtained from many (2 1)-dimensional systems is extended. Abundant localized coherent structures can be found by seclecting corresponding functions appropriately.  相似文献   

14.
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exact solutions to the (2+l)-dimenslonal dispersive long-wave equation, including multiple-soliton solutions, periodic soliton solutions, and Weierstrass function solutions. From these solutions, apart from several multisoliton excitations, we derive some novel features of wave structures by introducing some types of lower-dimensional patterns.  相似文献   

15.
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.  相似文献   

16.
A Bäcklund transformation of the (2+1)-dimensional dispersive long wave equations is derived by using the developed homogeneous balance method. by means of the Bäcklund transformation, the new multisoliton-like solution and other two types of exact solutions to these equations are constructed.  相似文献   

17.
In this Letter, using Backlund transformation and the new variable separation approach, we find a new general solution to the (3 1)-dimensional Burgers equation. The form of the universal formula obtained from many (2 1)-dimensional systems is extended. Abundant localized coherent structures can be found by seclecting corresponding functions appropriately.  相似文献   

18.
Variable separation approach is introduced to solve the (2 1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.  相似文献   

19.
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exact solutions to the (2 1)-dimensional dispersive long-wave equation, including multiple-soliton solutions, periodic soliton solutions, and Weierstrass function solutions. From these solutions, apart from several multisoliton excitations, we derive some novel features of wave structures by introducing some types of lower-dimensional patterns.  相似文献   

20.
The variable separation approach is used to obtain localized coherent structures of the new (2 1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号