首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Multiaxial stress-controlled and mixed stress-strain-controlled cyclic tests were carried out to investigate the multiaxial ratchetting of polycarbonate (PC) polymer at room temperature. The effects of applied mean stress, stress amplitude, loading rate, loading path and loading history on the ratchetting are discussed. The results show that the multiaxial ratchetting mainly occurs in the direction of non-zero mean stress. In the multiaxial stress-controlled cases, the ratchetting strain increases with increasing mean stress and stress amplitude and decreasing stress rate. Different values of ratchetting strain were obtained in the multiaxial cyclic tests with seven different loading paths, and prior cyclic loading with higher stress level resulted in decreased ratchetting in the subsequent cyclic loading with lower stress level. In the multiaxial mixed stress-strain-controlled tests, the ratchetting increased with increasing axial (or equivalent shear) stress and torsional-angle (or axial-displacement) amplitude and decreasing applied deformation rate.  相似文献   

2.
A prerequisite for a stable singlet hydrocarbon carbene is the existence of high barriers toward isomerization. Four derivatives of cyclopentylidene (1-4) with rigid and varying carbon cages are examined computationally at the B3LYP/6-311+G(d,p) level of theory. Singlet ground states are predicted for carbenes 1-4, with DeltaE(ST)'s = 7-22 kcal/mol. The rearrangement paths considered are 1,3-hydrogen shift, 1,2-carbon shift and beta-CC bond-cleavage. Carbenes 3 and 4 lie in relatively shallow potential-energy wells (around 4 and 6 kcal/mol, respectively) and are expected to rearrange via 1,3-hydrogen shifts to cyclopropane derivatives. For 1 and 2, the lowest energy rearrangement path is beta-CC bond-cleavage requiring about 12 and 20 kcal/mol, respectively, placing 2 in the deepest potential-energy well among the four carbenes.  相似文献   

3.
The rate coefficients for the reaction of 1,4-dioxane with atomic chlorine were measured from T = 292-360 K using the relative rate method. The reference reactant was isobutane and the experiments were made in argon with atomic chlorine produced by photolysis of small concentrations of Cl2. The rate coefficients were put on an absolute basis by using the published temperature dependence of the absolute rate coefficients for the reference reaction. The rate coefficients for the reaction of Cl with 1,4-dioxane were found to be independent of total pressure from p = 290 to 782 Torr. The experimentally measured rate coefficients showed a weak temperature dependence, given by k(exp)(T) = (8.4(-2.3)(+3.1)) × 10(-10) exp(-(470 ± 110)/(T/K)) cm3 molecule (-1) s(-1). The experimental results are rationalized in terms of statistical rate theory on the basis of molecular data obtained from quantum-chemical calculations. Molecular geometries and frequencies were obtained from MP2/aug-cc-pVDZ calculations, while single-point energies of the stationary points were computed at CCSD(T) level of theory. The calculations indicate that the reaction proceeds by an overall exothermic addition-elimination mechanism via two intermediates, where the rate-determining step is the initial barrier-less association reaction between the chlorine atom and the chair conformer of 1,4-dioxane. This is in contrast to the Br plus 1,4-dioxane reaction studied earlier, where the rate-determining step is a chair-to-boat conformational change of the bromine-dioxane adduct, which is necessary for this reaction to proceed. The remarkable difference in the kinetic behavior of the reactions of 1,4-dioxane with these two halogen atoms can be consistently explained by this change in the reaction mechanism.  相似文献   

4.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of atomic chlorine with pyridine (C(5)H(5)N) as a function of temperature (215-435 K) and pressure (25-250 Torr) in nitrogen bath gas. At T> or = 299 K, measured rate coefficients are pressure independent and a significant H/D kinetic isotope effect is observed, suggesting that hydrogen abstraction is the dominant reaction pathway. The following Arrhenius expression adequately describes all kinetic data at 299-435 K for C(5)H(5)N: k(1a) = (2.08 +/- 0.47) x 10(-11) exp[-(1410 +/- 80)/T] cm(3) molecule(-1) s(-1) (uncertainties are 2sigma, precision only). At 216 K < or =T< or = 270 K, measured rate coefficients are pressure dependent and are much faster than computed from the above Arrhenius expression for the H-abstraction pathway, suggesting that the dominant reaction pathway at low temperature is formation of a stable adduct. Over the ranges of temperature, pressure, and pyridine concentration investigated, the adduct undergoes dissociation on the time scale of our experiments (10(-5)-10(-2) s) and establishes an equilibrium with Cl and pyridine. Equilibrium constants for adduct formation and dissociation are determined from the forward and reverse rate coefficients. Second- and third-law analyses of the equilibrium data lead to the following thermochemical parameters for the addition reaction: Delta(r)H = -47.2 +/- 2.8 kJ mol(-1), Delta(r)H = -46.7 +/- 3.2 kJ mol(-1), and Delta(r)S = -98.7 +/- 6.5 J mol(-1) K(-1). The enthalpy changes derived from our data are in good agreement with ab initio calculations reported in the literature (which suggest that the adduct structure is planar and involves formation of an N-Cl sigma-bond). In conjunction with the well-known heats of formation of atomic chlorine and pyridine, the above Delta(r)H values lead to the following heats of formation for C(5)H(5)N-Cl at 298 K and 0 K: Delta(f)H = 216.0 +/- 4.1 kJ mol(-1), Delta(f)H = 233.4 +/- 4.6 kJ mol(-1). Addition of Cl to pyridine could be an important atmospheric loss process for pyridine if the C(5)H(5)N-Cl product is chemically degraded by processes that do not regenerate pyridine with high yield.  相似文献   

5.
The bulky trityl steric buttress is used to effect an intramolecular, uncatalysed ene reaction that operates at room temperature, whilst smaller buttresses require heat.  相似文献   

6.
A computational study of the isomerization reaction of a series of halodiazirines to halodiazo compounds (cyclic to open-chain RXCN2 species) has been carried out in order to establish the effect of the substituent groups on the isomerization rates and to obtain computational evidence of reaction mechanisms. Fluorine and chlorine were present as the halogen (X) atom, and the groups R=H, CH3, C2H5, n-C3H7, i-C3H7, cyclo-C3H5, phenyl, OCH3 and OH were used. Thermochemical calculations and natural bond orbital analyses were carried out at the B3LYP/6-31+G(d,p) level of theory. The results allowed us to discuss a reaction mechanism that proceeds in two steps: The first is the extrusion of nitrogen and formation of a carbene through a cyclic transition state that promotes the simultaneous breaking of the two C–N bonds, and the second one is described as the rebounding between the carbene and one of the nitrogen atoms of molecular nitrogen, both formed in the first step. The enthalpies of formation of halodiazirines and halodiazoalkanes have been calculated at the G3 level of theory.  相似文献   

7.

To explore the mechanisms for Ni-based oxide-catalyzed oxidative dehydrogenation (ODH) reactions, we investigate the reactions of C2H6 with NiO+ using density functional calculations. Two possible reaction pathways are identified, which lead to the formation of ethanol (path 1), ethylene and water (path 2). The proportion of products is discussed by Curtin-Hammett principle, and the result shows that path 2 is the main reaction channel and the water and ethylene are the main products. In order to get a deeper understanding of the titled reaction, numerous means of analysis methods including the atoms in molecules (AIM), electron localization function (ELF), natural bond orbital (NBO), and density of states (DOS) are used to study the properties of the chemical bonding evolution along the reaction pathways.

  相似文献   

8.
Herein, metal-free radical Heck-type reaction of styrenes with sulfonyl hydrazides to synthesize vinyl sulfones is developed. The reaction is performed under economical TBAI/TBHP system on water in open air at room temperature, which proceeds through the radical addition to styrenes followed by hydrogen-abstraction. When compared to known approaches for the synthesis of vinyl sulfones from alkenes, this radical Heck-type strategy is practical, green and does not go through HI elimination process. Furthermore, this protocol can be expanded to the iodosulfonylation of alkynes for the synthesis of iodovinyl sulfones.  相似文献   

9.
Accurate calculations are presented on the mechanism of the MBH reaction, focusing on the reaction between methyl acrylate and benzaldehyde, catalyzed by a tertiary amine. We address the mechanism under protic solvent-free conditions, but also consider how the mechanism and rate-limiting step change in the presence of alcohols. We have carefully calibrated the DFT method used in the calculations by carrying out high-level G3MP2 calculations on a model system. All of our calculations also treat the effect of solvent, described as a dielectric continuum. In the absence of protic solvent, we predict that deprotonation of the alpha-position is the rate-determining step and occurs through a cyclic transition state, with proton transfer to a hemiacetal alkoxide formed by addition of a second equivalent of aldehyde to the intermediate alkoxide. As first suggested by McQuade, this mechanism explains the observed second-order kinetics with respect to aldehyde concentration in the absence of protic solvent. In contrast, in the presence of methanol, we find a slightly lower energy pathway, in which the alcohol serves as a shuttle to transfer the proton from carbon to oxygen. Overall, the barrier to reaction for the latter mechanism is of 24.6 kcal/mol with respect to reactants at the B3LYP level of theory. The relative energy for the addition transition state of the amine-acrylate betaine adduct to the aldehyde is much lower, at 16.0 kcal/mol relative to reactants, so C-C bond formation should not be rate-limiting, except perhaps for some aliphatic aldehydes or imines. We discuss the implications of this mechanism for the design of asymmetric versions of the MBH reaction, given the overwhelming importance of the proton-transfer step.  相似文献   

10.
Diruthenium azido complexes Ru(2)(DPhF)(4)N(3) (1a, DPhF = N,N'-diphenylformamidinate) and Ru(2)(D(3,5-Cl(2))PhF)(4)N(3) (1b, D(3,5-Cl(2))PhF = N,N'-bis(3,5-dichlorophenyl)formamidinate) have been investigated by thermolytic and photolytic experiments to investigate the chemical reactivity of the corresponding diruthenium nitride species. Thermolysis of 1b at ~100 °C leads to the expulsion of N(2) and isolation of Ru(2)(D(3,5-Cl(2))PhF)(3)NH(C(13)H(6)N(2)Cl(4)) (3b), in which a nitrogen atom has been inserted into one of the proximal aryl C-H bonds of a D(3,5-Cl(2))PhF ligand. A similar C-H insertion product is obtained upon thawing a frozen CH(2)Cl(2) solution of the nitride complex Ru(2)(DPhF)(4)N (2a), formed via photolysis at -196 °C of 1a to yield Ru(2)(DPhF)(3)NH(C(13)H(10)N(2)) (3a). Evidence is provided here that both reactions proceed via direct intramolecular attack of an electrophilic terminal nitrido nitrogen atom on a proximal aryl ring. Thermodynamic and kinetic data for this reaction are obtained from differential scanning calorimetric measurements and thermal gravimetric analysis of the thermolysis of Ru(2)(D(3,5-Cl(2))PhF)(4)N(3), and by Arrhenius/Eyring analysis of the conversion of Ru(2)(DPhF)(4)N to its C-H insertion product, respectively. These data are used to develop a detailed, experimentally validated DFT reaction pathway for N(2) extrusion and C-H functionalization from Ru(2)(D(3,5-Cl(2))PhF)(4)N(3). The diruthenium nitrido complex is an intermediate in the calculated reaction pathway, and the C-H functionalization event shares a close resemblance to a classical electrophilic aromatic substitution mechanism.  相似文献   

11.
The computational analysis of the rhodium-catalyzed Pauson-Khand reaction indicates that the key transition state is highly charge-polarized, wherein different diastereoisomers have distinctively different charge polarization patterns. Experimental studies demonstrate that chloro-enynes provide the optimal σ-electron-withdrawing group to promote polarization and thereby reduce the activation barrier to provide a highly diastereoselective reaction at room temperature.  相似文献   

12.
A new 9-diphenylphosphinophenanthrene ligand (9DPP, 1), its oxide (9DPPO, 2), and its gold complex [(AuCl(9DPP)] (3) were synthesized. The Au(I) complex 3 was found to exhibit intense blue-green, room-temperature phosphorescence (Phip = 0.06 and tauT = 22.7 micros) originating in the locally excited triplet of the phenanthrene moiety (3LE) in degassed 2-methyltetrahydrofuran solution. On the assumption that PhiST = 1.0 for 3, the radiative rate constant (kr) in the triplet state is calculated to be 2.6 x 10(3) s(-1). This value is 4 orders of magnitude larger than the radiative rate constant of the triplet phenanthrene (0.26 s(-1)). Thus, the coordinated Au(I) atom is concluded to have a markedly large heavy-atom effect on kr of the phenanthrene chromophore in 3.  相似文献   

13.
14.
[reaction: see text] Efficient ring opening of different epoxides by reaction with representative alcohols is presented. These processes were carried out at room temperature and rely on the usefulness of commercial copper tetrafluoroborate as catalyst.  相似文献   

15.
《Tetrahedron》2019,75(41):130575
A simple method for the synthesis of thioamide derivatives in DMSO at room temperature and at 120 °C has been developed. Total 27 compounds were prepared under both conditions via a one-pot, three component reaction between substituted aromatic aldehydes, elemental sulfur powder, and cyclic secondary amines. By optimizing the mole ratio of sulfur powder and amines, we have successfully carried out Willgerodt-Kindler reaction of aromatic aldehydes at room temperature. At 120 °C, it is catalyst free reaction with lower reaction time whereas at room temperature, due to the additional amine molecule, Willgerodt-Kindler reaction of aromatic aldehydes is successfully carried out at room temperature. On gram-scale, the reaction is successfully attempted under both conditions with good yields.  相似文献   

16.
This article describes the rational design of first generation systems for oxidatively induced Aryl-CF(3) bond-forming reductive elimination from Pd(II). Treatment of (dtbpy)Pd(II)(Aryl)(CF(3)) (dtbpy = di-tert-butylbipyridine) with NFTPT (N-fluoro-1,3,5-trimethylpyridinium triflate) afforded the isolable Pd(IV) intermediate (dtbpy)Pd(IV)(Aryl)(CF(3))(F)(OTf). Thermolysis of this complex at 80 °C resulted in Aryl-CF(3) bond-formation. Detailed experimental and computational mechanistic studies have been conducted to gain insights into the key reductive elimination step. Reductive elimination from this Pd(IV) species proceeds via pre-equilibrium dissociation of TfO(-) followed by Aryl-CF(3) coupling. DFT calculations reveal that the transition state for Aryl-CF(3) bond formation involves the CF(3) acting as an electrophile with the Aryl ligand serving as a nucleophilic coupling partner. These mechanistic considerations along with DFT calculations have facilitated the design of a second generation system utilizing the tmeda (N,N,N',N'-tetramethylethylenediamine) ligand in place of dtbpy. The tmeda complexes undergo oxidative trifluoromethylation at room temperature.  相似文献   

17.
The kinetics for the gas-phase reaction of phenyl radicals with allene has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum-chemical calculations. The absolute rate constant measured by the CRDS technique can be expressed by the following Arrhenius equation: kallene (T=301-421 K)=(4.07+/-0.38)x10(11) exp[-(1865+/-85)/T] cm3 mol(-1) s(-1). Theoretical calculations, employing high level G2M energetic and IRCMax(RCCSD(T)//B3LYP-DFT) molecular parameters, indicate that under our experimental conditions the most preferable reaction channel is the addition of phenyl radicals to the terminal carbon atoms in allene. Predicted total rate constants agree with the experimental values within 40%. Calculated total and branching rate constants are provided for high-T kinetic modeling.  相似文献   

18.
Wavelength-selective infrared multiple-photon photodissociation (WS-IRMPD) was used to study isotopically-labeled ions generated by McLafferty rearrangement of nicotinyl-glycine-tert-butyl ester and betaine-glycine-tert-butyl ester. The tert-butyl esters were incubated in a mixture of D(2)O and CH(3)OD to induce solution-phase hydrogen-deuterium exchange and then converted to gas-phase ions using electrospray ionization. McLafferty rearrangement was used to generate the free-acid forms of the respective model peptides through transfer of an H atom and elimination of butene. The specific aim was to use vibrational spectra generated by WS-IRMPD to determine whether the H atom remains at the acid group, or migrates to one or more of the other exchangeable sites. Comparison of the IRMPD results in the region from 1200-1900 cm(-1) to theoretical spectra for different isotopically-labeled isomers clearly shows that the H atom is situated at the C-terminal acid group and migration to amide positions is negligible on the time scale of the experiment. The results of this study suggest that use of the McLafferty rearrangement for peptide esters could be an effective approach for generation of H-atom isotope tracers, in situ, for subsequent investigation of intramolecular proton migration during peptide fragmentation studies.  相似文献   

19.
The kinetics of the gas-phase reactions of allyl chloride and benzyl chloride with the OH radical and O3 were investigated at 298 ± 2 K and atmospheric pressure. Direct measurements of the rate constants for reactions with ozone yielded values of ??(O3 + allyl chloride) = (1.60 ± 0.18) × 10?18 cm3 molecule?1 s?1 and ??(O3 + benzyl chloride) < 6 × 10?20 cm3 molecule?1 s?1. With the use of a relative rate technique and ethane as a scavenger of chlorine atoms produced in the OH radical reactions, rate constants of ??(OH + allyl chloride) = (1.69 ± 0.07) × 10?11 cm3 molecule?1 s?1 and ??(OH + benzyl chloride) = (2.80 ± 0.19) × 10?12 cm3 molecule?1 s?1 were measured. A study of the OH radical reaction with allyl chloride by long pathlength FT-IR absorption spectroscopy indicated that the co-products ClCH2CHO and HCHO account for ca. 44% of the reaction, and along with the other products HOCH2CHO, (ClCH2)2CO, and CH2 ? CHCHO account for 84 ± 16% of the allyl chloride reacting. The data indicate that in one atmosphere of air in the presence of NO the chloroalkoxy radical formed following OH radical addition to the terminal carbon atom of the double bond decomposes to yield HOCH2CHO and the CH2Cl radical, which becomes a significant source of the Cl atoms involved in secondary reactions. A product study of the OH radical reaction with benzyl chloride identified only benzaldehyde and peroxybenzoyl nitrate in low yields (ca. 8% and ?4%, respectively), with the remainder of the products being unidentified.  相似文献   

20.
The gas-phase hydrogen abstraction reactions of CH(3)O(2) and HO(2) with HO(2) in the presence and absence of a single water molecule have been studied at the CCSD(T)/6-311++G(3d,2p)//B3LYP/6-311G(2d,2p) level of theory. The calculated results show that the process for O(3) formation is much faster than that for (1)O(2) and (3)O(2) formation in the water-catalyzed CH(3)O(2) + HO(2) reaction. This is different from the results for the non-catalytic reaction of CH(3)O(2) + HO(2), in which almost only the process for (3)O(2) formation takes place. Unlike CH(3)O(2) + HO(2) reaction in which the preferred process is different in the catalytic and non-catalytic conditions, the channel for (3)O(2) formation is the dominant in both catalytic and non-catalytic HO(2) + HO(2) reactions. Furthermore, the calculated total CVT/SCT rate constants for water-catalyzed and non-catalytic title reactions show that the water molecule doesn't contribute to the rate of CH(3)O(2) + HO(2) reaction though the channel for O(3) formation in this water-catalyzed reaction is more kinetically favorable than its non-catalytic process. Meanwhile, the water molecule plays an important positive role in increasing the rate of HO(2) + HO(2) reaction. These results are in good agreement with available experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号