共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct synthesis of nanoparticles of the thermoelectrically relevant AgPbmSbTem+2 materials (m = 0, 1, 2) was accomplished in reverse micelles. The procedure offers several distinct advantages and opens the field for experimentation of thermoelectric properties for nanoparticle-derived materials. 相似文献
2.
Nanostructured Bi(2-x)Cu(x)S(3) (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) thermoelectric polycrystals were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS) methods. The effect of Cu content on the microstructure and thermoelectric property of Bi(2-x)Cu(x)S(3) bulk samples was investigated. It was found that the subtle tailoring of Cu content could reduce both the electrical resistivity and the thermal conductivity at the same time, and consequently enhancing the thermoelectric property. A low electrical resistivity of 1.34 × 10(-4)Ω m(-1) and a low thermal conductivity of 0.52 W m(-1) K(-1) were obtained for the Bi(1.995)Cu(0.005)S(3) sample at 573 K. The low thermal conductivity is supposed to be due to the nanoscopic Cu-rich regions embedded in the host matrix. A peak ZT value of 0.34 at 573 K was achieved for the Bi(1.995)Cu(0.005)S(3) composition, which is the highest value in the Bi(2)S(3) system reported so far. 相似文献
3.
Quarez E Hsu KF Pcionek R Frangis N Polychroniadis EK Kanatzidis MG 《Journal of the American Chemical Society》2005,127(25):9177-9190
The nature of the thermoelectric materials Ag(1-x)Pb(m)SbTe(m+2) or LAST-m materials (LAST for Lead Antimony Silver Tellurium) with different m values at the atomic as well as nanoscale was studied with powder/single-crystal X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy. Powder diffraction patterns of different members (m = 0, 6, 12, 18, infinity) are consistent with pure phases crystallizing in the NaCl-structure-type (Fmm) and the proposition that the LAST family behaved as solid solutions between the PbTe and AgSbTe2 compounds. However, electron diffraction and high resolution transmission electron microscopy studies suggest the LAST phases are inhomogeneous at the nanoscale with at least two coexisting sets of well-defined phases. The minority phase which is richer in Ag and Sb is on the nanosized length scale, and it is endotaxially embedded in the majority phase which is poorer in Ag and Sb. Moreover, within each nanodomain we observe extensive long range ordering of Ag, Pb, and Sb atoms. The long range ordering can be confirmed by single crystal X-ray diffraction studies. Indeed, data collections of five different single crystals were successfully refined in space groups of lower symmetry than Fmm including P4/mmm and Rm. The results reported here provide experimental evidence for a conceptual basis that could be employed when designing high performance thermoelectric materials and dispel the decades long belief that the systems (AgSbTe2)(1-x)(PbTe)x are solid solutions. 相似文献
4.
Xiaodong Wang Xia Li Fengxing Jiang Changcun Li Jian Hou Jingkun Xu 《Journal of Polymer Science.Polymer Physics》2017,55(13):997-1004
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004 相似文献
5.
6.
Stausholm-Møller J Kristoffersen HH Hinnemann B Madsen GK Hammer B 《The Journal of chemical physics》2010,133(14):144708
We present a systematic study of electronic gap states in defected titania using our implementation of the Hubbard-U approximation in the grid-based projector-augmented wave density functional theory code, GPAW. The defects considered are Ti interstitials, O vacancies, and H dopants in the rutile phase of bulk titanium dioxide. We find that by applying a sufficiently large value for the Hubbard-U parameter of the Ti 3d states, the excess electrons localize spatially at the Ti sites and appear as states in the band gap. At U=2.5?eV, the position in energy of these gap states are in fair agreement with the experimental observations. In calculations with several excess electrons and U=2.5?eV, all of these end up in gap states that are spatially localized around specific Ti atoms, thus effectively creating one Ti(3+) ion per excess electron. An important result of this investigation is that regardless of which structural defect is the origin of the gap states, at U=2.5?eV, these states are found to have their mean energies within a few hundredths of an eV from 0.94 eV below the conduction band minimum. 相似文献
7.
Yingqiao Jiang Mengchen Du Gang Cheng Peng Gao Tingting Dong Jing Zhou Xiaojian Feng Zhangxing He Yuehua Li Lei Dai Wei Meng Ling Wang 《Journal of Energy Chemistry》2021,(8):706-714
Vanadium redox flow battery (VRFB) is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor elec... 相似文献
8.
In an attempt to understand the phase behavior of aqueous hydrogen fluoride, the clustering in the mixture is investigated at the molecular level. The study is performed at the mPW1B95/6-31+G(d,p) level of theory. Several previous studies attempted to describe the dissociation of HF in water, but in this investigation, the focus is only on the association patterns that are present in this binary mixture. A total of 214 optimized geometries of (HF)n(H2O)m clusters, with m + n as high as 8, were investigated. For each cluster combination, several different conformations are investigated, and the preferred conformations are presented. Using multiple linear regressions, the average strengths of the four possible H-bonding interactions are obtained. The strongest H-bond interaction is reported to be the H2O...H-F interaction. The most probable distributions of mixed clusters as a function of composition are also deduced. It is found that the larger (HF)n(H2O)m clusters are favored both energetically and entropically compared to the ones that are of size m + n < or = 3. Also, the clusters with equimolar contributions of HF and H2O are found to have the strongest interactions. 相似文献
9.
《The Journal of chemical thermodynamics》2003,35(4):667-675
Partial molar volumes of 11 n-alkanes (C21H44, C22H46, C23H48, C24H50, C25H52, C27H56, C28H58, C31H64, C34H70, C36H74, and C40H82) at infinite dilution in CO2, obtained by supercritical fluid chromatography at T=310.5 K to T=431.6 K and p=8.7 MPa to p=39.1 MPa, have been used to estimate the (carbon dioxide–alkane) interaction second virial coefficients B12. The isothermal, high-pressure data are fitted by the Peng–Robinson equation of state with the van der Waals one-fluid mixing rules, and the optimised unlike-interaction parameters of the equation are used to calculate B12. The error sources, inherent in this model-dependent procedure, are discussed. 相似文献
10.
Poudeu PF D'Angelo J Kong H Downey A Short JL Pcionek R Hogan TP Uher C Kanatzidis MG 《Journal of the American Chemical Society》2006,128(44):14347-14355
The series of Pb(9.6)Sb(0.2)Te(10)(-)(x)Se(x) compounds with different Se content (x) were prepared, and their structure was investigated at the atomic and nanosized regime level. Thermoelectric properties were measured in the temperature range from 300 to 700 K. The Pb(9.6)Sb(0.2)Te(10)(-)(x)Se(x) series was designed after the refinement of the single-crystal structure of Pb(3.82)Sb(0.12)Te(4) (Pb(9.6)Sb(0.3)Te(10); S.G. Pmm) by substituting isoelectronically in anion positions Te by Se. The Pb(9.6)Sb(0.2)Te(10)(-)(x)Se(x)() compounds show significantly lower lattice thermal conductivity (kappa(L)) compared to the well-known PbTe(1)(-)(x)Se(x) solid solutions. For Pb(9.6)Sb(0.2)Te(3)Se(7) (x = 7), a kappa(L) value as low as 0.40 W/m.K was determined at 700 K. High-resolution transmission electron microscopy of several Pb(9.6)Sb(0.2)Te(10)(-)(x)Se(x) samples showed widely distributed Sb-rich nanocrystals in the samples which is the key feature for the strong reduction of the lattice thermal conductivity. The reduction of kappa(L) results in a significantly enhanced thermoelectric figure of merit of Pb(9.6)Sb(0.2)Te(10)(-)(x)Se(x) compared to the corresponding PbTe(1)(-)(x)Se(x) solid solution alloys. For Pb(9.6)Sb(0.2)Te(3)Se(7) (x = 7), a maximum figure of merit of ZT approximately 1.2 was obtained at approximately 650 K. This value is about 50% higher than that of the state-of-the-art n-type PbTe. The work provides experimental validation of the theoretical concept that embedded nanocrystals can promote strong scattering of acoustic phonons. 相似文献
11.
Peng W Yanagida M Chen H Han L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(17):5269-5274
Hierarchical TiO(2) ellipsoids 250-500 nm in size have been synthesized on a large scale by a template-free hydrothermal route. The submicrometer-sized hierarchitectures are assembled from highly crystallized anatase nanorods about 17 nm in diameter with macroporous cavities on the outer shells. Based on the time-dependent morphological evolution under hydrothermal conditions, an oriented attachment process is proposed to explain formation of the hierarchical structures. Such hierarchical TiO(2) not only adsorbs large amounts of dye molecules due to high surface area, but also shows good light scattering caused by the submicrometer size. The TiO(2) hierarchitectures were deposited on top of a transparent TiO(2) nanocrystalline main layer to construct a double-layered photoanode for dye-sensitized solar cell (DSC) application, exhibiting enhanced light harvesting and power-conversion efficiency compared to a commercial TiO(2)-based electrode. 相似文献
12.
The high temperature p-type thermoelectric material Yb(14)MnSb(11) has been of increasing research interest since its high temperature thermoelectric properties were first measured in 2006. Subsequent substitutions of Zn, Al, and La into the structure have shown that this material can be further optimized by altering the carrier concentration or by reduction of spin-disorder scattering. Here the properties of the Yb(14-x)Ca(x)MnSb(11) solid solution series where isovalent Ca(2+) is substituted for Yb(2+) will be presented. Crystals of the Yb(14-x)Ca(x)MnSb(11) solid solution series were made by Sn-flux (x = 2, 4, 6, 8) with the following ratio of elements: (14-x)Yb: xCa: 6 Mn: 11Sb: 86Sn, and their structures determined by single crystal X-ray diffraction. The density of the material significantly decreases by over 2 g/cm(3) as more Ca is added (from x = 1 to 8), because of the lighter mass of Ca. The resulting lower density is beneficial from a device manufacturing perspective where there is often a trade-off with the specific power per kilogram. The compounds crystallize in the Ca(14)AlSb(11) structure type. The Ca substitution contributes to systematic lengthening the Mn-Sb bond while shortening the Sb-Sb bond in the 3 atom linear unit with increasing amounts of Ca. Temperature dependent thermoelectric properties, Seebeck, electrical resistivity, and thermal conductivity were measured from room temperature to 1273 K. Substitution of Yb with Ca improves the Seebeck coefficient while decreasing the thermal conductivity, along with decreasing the carrier concentration in this p-type material resulting in an enhanced thermoelectric figure of merit, zT, compared to Yb(14)MnSb(11). 相似文献
13.
Luís P. N. Rebelo Hermínio C. De Sousa W. Alexander Van Hook 《Journal of Polymer Science.Polymer Physics》1997,35(4):631-637
We report new experimental evidence of the existence of double critical points in a binary system. Pressure-temperature data on the solubility of (polystyrene + acetaldehyde) were obtained using a low-angle light-scattering technique. Phase diagrams change from an UCST/LCST configuration showing a marked double maxima to an hour-glass shape with a “window of miscibility” as pressure decreases. Successful modeling of these unusual shapes was achieved by using a computation algorithm which incorporates a temperature- and concentration-dependent interaction parameter. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 631–637, 1997 相似文献
14.
Dr. Xun‐Lei Ding Xiao‐Nan Wu Dr. Yan‐Xia Zhao Jia‐Bi Ma Prof. Sheng‐Gui He 《Chemphyschem》2011,12(11):2110-2117
Cerium oxide cluster cations (CemOn+, m=2–16; n=2m, 2m±1 and 2m±2) are prepared by laser ablation and reacted with acetylene (C2H2) in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Reactions of stoichiometric CemO2m+ (m=2–6) with C2H2 produce CemO2m?2+ clusters, which indicates a “double‐oxygen‐atom transfer” reaction CemO2m++C2H2→CemO2m?2++(CHO)2 (ethanedial). A single‐oxygen‐atom transfer reaction channel is also identified as CemO2m++C2H2→CemO2m?1++C2H2O (at least for m=2 and 3). Density functional theory calculations are performed to study reaction mechanisms of Ce2O4++C2H2, and the calculated results confirm that both the single‐ and double‐oxygen‐atom transfer channels are thermodynamically and kinetically favourable. 相似文献
15.
The structure, bonding and energetics of B(2)AlH(n)(m) (n = 3-6, m = -2 to +1) are compared with corresponding homocyclic boron, aluminum analogues and BAl(2)H(n)(m) using density functional theory (DFT). Divalent to hexacoordinated boron and aluminum atoms are found in these species. The geometrical and bonding pattern in B(2)AlH(4)(-) is similar to that for B(2)SiH(4). Species with lone pairs on the divalent boron and aluminum atoms are found to be minima on the potential energy surface of B(2)AlH(3)(2-). A dramatic structural diversity is observed in going from B(3)H(n)(m) to B(2)AlH(n)(m), BAl(2)H(n)(m) and Al(3)H(n)(m) and this is attributable to the preference of lower coordination on aluminum, higher coordination on boron and the higher multicenter bonding capability of boron. The most stable structures of B(3)H(6)(+), B(2)AlH(5) and BAl(2)H(4)(-) and the trihydrogen bridged structure of Al(3)H(3)(2-) show an isostructural relationship, indicating the isolobal analogy between trivalent boron and divalent aluminum anion. 相似文献
16.
The structural and electronic properties of Au(m)Ag(n) binary clusters (2 < or = m + n < or = 8) have been investigated by density functional theory with relativistic effective core potentials. The results indicate that Au atoms tend to occupy the surface of Au(m)Ag(n) clusters (n > or = 2 and m > or = 2). As a result, segregation of small or big bimetallic clusters can be explained according to the atomic mass. The binding energies of the most stable Au(m)Ag(n) clusters increase with increasing m+n. The vertical ionization potentials of the most stable Au(m)Ag(n) clusters show odd-even oscillations with changing m+n. The possible dissociation channels of the clusters considered are also discussed. 相似文献
17.
Highly ordered mesoporous Cr(2)O(3) materials with high specific surface area and narrow pore size distribution were successfully prepared by a vacuum assisted impregnation method. Both 2-dimensional hexagonal and 3-dimensional cubic Cr(2)O(3) mesoporous replicas from SBA-15 and KIT-6 templates exhibit enhanced performance for gas sensors and lithium ion batteries, compared to the bulk Cr(2)O(3) counterpart. 相似文献
18.
19.
Ingram KI Häller LJ Kaltsoyannis N 《Dalton transactions (Cambridge, England : 2003)》2006,(20):2403-2414
Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands. 相似文献
20.
Zhang Jiayan Shen Jianxing Wei Changbao Tao Haizheng Yue Yuanzheng 《Journal of Solid State Electrochemistry》2016,20(7):2063-2069
Journal of Solid State Electrochemistry - LiMn2O4 electrode suffers serious capacity fading during cycling in LiPF6-based liquid electrolytes. In this work, we synthesized a new type of cathode... 相似文献