首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the positivity property for a class of 2-stage explicit Runge-Kutta (RK2) methods of order two when applied to the numerical solution of special nonlinear initial value problems (IVPs) for ordinary differential equations (ODEs). We also pay particular attention to monotonicity property. We obtain new results for positivity which are important in practical applications. We provide some numerical examples to illustrate our results.  相似文献   

2.
A theory is presented for implicit one-step extrapolation methods for ordinary differential equations. The computational schemes used in such methods are based on the implicit Runge-Kutta methods. An efficient implementation of implicit extrapolation is based on the combined step size and order control. The emphasis is placed on calculating and controlling the global error of the numerical solution. The aim is to achieve the user-prescribed accuracy in an automatic mode (ignoring round-off errors). All the theoretical conclusions of this paper are supported by the numerical results obtained for test problems.  相似文献   

3.
New SDIRKN methods specially adapted to the numerical integration of second-order stiff ODE systems with periodic solutions are obtained. Our interest is focused on the dispersion (phase errors) of the dominant components in the numerical oscillations when these methods are applied to the homogeneous linear test model. Based on this homogeneous test model we derive the dispersion and P-stability conditions for SDIRKN methods which are assumed to be zero dissipative. Two four-stage symplectic and P-stable methods with algebraic order 4 and high order of dispersion are obtained. One of the methods is symmetric and sixth-order dispersive whereas the other method is nonsymmetric and eighth-order dispersive. These methods have been applied to a number of test problems (linear as well as nonlinear) and some numerical results are presented to show their efficiency when they are compared with other methods derived by Sharp et al. [IMA J. Numer. Anal. 10 (1990) 489–504].  相似文献   

4.
We consider the numerical integration of non-autonomous separable parabolic equations using high order splitting methods with complex coefficients (methods with real coefficients of order greater than two necessarily have negative coefficients). We propose to consider a class of methods that allows us to evaluate all time-dependent operators at real values of the time, leading to schemes which are stable and simple to implement. If the system can be considered as the perturbation of an exactly solvable problem and the flow of the dominant part is advanced using real coefficients, it is possible to build highly efficient methods for these problems. We show the performance of this class of methods on several numerical examples and present some new improved schemes.  相似文献   

5.
In this paper we propose a unified formulation to introduce Lagrangian and semi-Lagrangian velocity and displacement methods for solving the Navier–Stokes equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. In particular, we propose two new second-order characteristics methods in terms of the displacement, one semi-Lagrangian and the other one pure Lagrangian. The pure Lagrangian displacement methods are useful for solving free surface problems and fluid-structure interaction problems because the computational domain is independent of the time and fluid–solid coupling at the interphase is straightforward. However, for moderate to high-Reynolds number flows, they can lead to high distortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the transformation to the identity. In order to assess the performance of the obtained numerical methods, we solve different problems in two space dimensions. In particular, numerical results for a sloshing problem in a rectangular tank and the flow in a driven cavity are presented.  相似文献   

6.
本文给出了一类比Adams-Bashforth方法的局部截断误差主项系数小和绝对稳定区间大的显式k阶线性k步法基本公式.作者求出了公式的分数形式的精确系数,阶数和局部截断误差主项系数,给出了3-9步公式的绝对稳定区间,构造了由新公式的4阶显式公式和一个同阶隐式基本公式组合而成的特殊预估-校正方法,它的绝对稳定区间大于预估公式而且等于校正公式, 比著名的Adams-Bashforth-Moulton预估校正方法的绝对稳定区间大, 最后用数值试验对结果进行了验证,适合于求解常微分方程初值问题.  相似文献   

7.
We consider splitting methods for the numerical integration of separable non-autonomous differential equations. In recent years, splitting methods have been extensively used as geometric numerical integrators showing excellent performances (both qualitatively and quantitatively) when applied on many problems. They are designed for autonomous separable systems, and a substantial number of methods tailored for different structures of the equations have recently appeared. Splitting methods have also been used for separable non-autonomous problems either by solving each non-autonomous part separately or after each vector field is frozen properly. We show that both procedures correspond to introducing the time as two new coordinates. We generalize these results by considering the time as one or more further coordinates which can be integrated following either of the previous two techniques. We show that the performance as well as the order of the final method can strongly depend on the particular choice. We present a simple analysis which, in many relevant cases, allows one to choose the most appropriate split to retain the high performance the methods show on the autonomous problems. This technique is applied to different problems and its performance is illustrated for several numerical examples.  相似文献   

8.
New symmetric DIRK methods specially adapted to the numerical integration of first-order stiff ODE systems with periodic solutions are obtained. Our interest is focused on the dispersion (phase errors) of the dominant components in the numerical oscillations when these methods are applied to the homogeneous linear test model. Based on this homogeneous test model we derive the dispersion conditions for symmetric DIRK methods as well as symmetric stability functions with real poles and maximal dispersion order. Two new fourth-order symmetric methods with four and five stages are obtained. One of the methods is fourth-order dispersive whereas the other method is symplectic and sixth-order dispersive. These methods have been applied to a number of test problems (linear as well as nonlinear) and some numerical results are presented to show their efficiency when they are compared with the symplectic DIRK method derived by Sanz-Serna and Abia (SIAM J. Numer. Anal. 28 (1991) 1081–1096).  相似文献   

9.
Preconditioned Krylov subspace (KSP) methods are widely used for solving large‐scale sparse linear systems arising from numerical solutions of partial differential equations (PDEs). These linear systems are often nonsymmetric due to the nature of the PDEs, boundary or jump conditions, or discretization methods. While implementations of preconditioned KSP methods are usually readily available, it is unclear to users which methods are the best for different classes of problems. In this work, we present a comparison of some KSP methods, including GMRES, TFQMR, BiCGSTAB, and QMRCGSTAB, coupled with three classes of preconditioners, namely, Gauss–Seidel, incomplete LU factorization (including ILUT, ILUTP, and multilevel ILU), and algebraic multigrid (including BoomerAMG and ML). Theoretically, we compare the mathematical formulations and operation counts of these methods. Empirically, we compare the convergence and serial performance for a range of benchmark problems from numerical PDEs in two and three dimensions with up to millions of unknowns and also assess the asymptotic complexity of the methods as the number of unknowns increases. Our results show that GMRES tends to deliver better performance when coupled with an effective multigrid preconditioner, but it is less competitive with an ineffective preconditioner due to restarts. BoomerAMG with a proper choice of coarsening and interpolation techniques typically converges faster than ML, but both may fail for ill‐conditioned or saddle‐point problems, whereas multilevel ILU tends to succeed. We also show that right preconditioning is more desirable. This study helps establish some practical guidelines for choosing preconditioned KSP methods and motivates the development of more effective preconditioners.  相似文献   

10.
A boundary value appraoch to the numerical solution of initial value problems by means of linear multistep methods is presented. This theory is based on the study of linear difference equations when their general solution is computed by imposing boundary conditions. All the main stability and convergence properties of the obtained methods are investigated abd compared to those of the classical multistep methods. Then, as an example, new itegration formulas, called extended trapezoidal rules, are derived. For any order they have the same stability properties (in the sense of the definitions given in this paper) of the trapezoidal rule, which is the first method in this class. Some numerical examples are presented to confirm the theoretical expectations and to allow us to trust a future code based on boundary value methods.  相似文献   

11.
The so-called two-step peer methods for the numerical solution of Initial Value Problems (IVP) in differential systems were introduced by R. Weiner, B.A. Schmitt and coworkers as a tool to solve different types of IVPs either in sequential or parallel computers. These methods combine the advantages of Runge-Kutta (RK) and multistep methods to obtain high stage order and therefore provide in a natural way a dense output. In particular, several explicit peer methods have been proved to be competitive with standard RK methods in a wide selection of non-stiff test problems.The aim of this paper is to propose an alternative procedure to construct families of explicit two step peer methods in which the available parameters appear in a transparent way. This allows us to obtain families of fixed stepsize s stage methods with stage order 2s−1, which provide dense output without extra cost, depending on some free parameters that can be selected taking into account the stability properties and leading error terms. A study of the extension of these methods to variable stepsize is also carried out. Optimal s stage methods with s=2,3 are derived.  相似文献   

12.
交替方向法是求解可分离结构变分不等式问题的经典方法之一, 它将一个大型的变分不等式问题分解成若干个小规模的变分不等式问题进行迭代求解. 但每步迭代过程中求解的子问题仍然摆脱不了求解变分不等式子问题的瓶颈. 从数值计算上来说, 求解一个变分不等式并不是一件容易的事情.因此, 本文提出一种新的交替方向法, 每步迭代只需要求解一个变分不等式子问题和一个强单调的非线性方程组子问题. 相对变分不等式问题而言, 我们更容易、且有更多的有效算法求解一个非线性方程组问题. 在与经典的交替方向法相同的假设条件下, 我们证明了新算法的全局收敛性. 进一步的数值试验也验证了新算法的有效性.  相似文献   

13.
We discuss a new variant of Iterated Defect Correction (IDeC), which increases the range of applicability of the method. Splitting methods are utilized in conjunction with special integration methods for Hamiltonian systems, or other initial value problems for ordinary differential equations with a particular structure, to solve the neighboring problems occurring in the course of the IDeC iteration. We demonstrate that this acceleration technique serves to rapidly increase the convergence order of the resulting numerical approximations, up to the theoretical limit given by the order of certain superconvergent collocation methods. This project was supported by the Special Research Program SFB F011 ‘AURORA’ of the Austrian Science Fund FWF.  相似文献   

14.
In this paper, we consider the integration of the special second‐order initial value problem. Hybrid Numerov methods are used, which are constructed in the sense of Runge‐Kutta ones. Thus, the Taylor expansions at the internal points are matched properly in the final expression. A new family of such methods attaining eighth algebraic order is given at a cost of only 7 function evaluations per step. The new family provides us with an extra parameter, which is used to increase phase‐lag order to 18. We proceed with numerical tests over a standard set of problems for these cases. Appendices implementing the symbolic construction of the methods and derivation of their coefficients are also given.  相似文献   

15.
In this article, we present an extension of our previous approaches for steady‐state higher‐order compact (HOC) difference methods to time‐dependent problems. The formulation also provides a framework for similar treatment of other HOC spatial schemes. A stability analysis is provided for transient convection‐diffusion in 1D and transient diffusion in 2D. Supporting numerical experiments are included to illustrate stability and accuracy as well as oscillatory and dissipative behavior. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 657–672, 2001  相似文献   

16.
It is well known that for gradient systems in Euclidean space or on a Riemannian manifold, the energy decreases monotonically along solutions. In this letter we derive and analyse functionally fitted energy-diminishing methods to preserve this key property of gradient systems. It is proved that the novel methods are energy-diminishing and can achieve damping for very stiff gradient systems. We also show that the methods can be of arbitrarily high order and discuss their implementations. A numerical test is reported to illustrate the efficiency of the new methods in comparison with three existing numerical methods in the literature.  相似文献   

17.
Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In this paper, the problem of solving the one-dimensional wave equation subject to given initial and non-local boundary conditions is considered. These non-local conditions arise mainly when the data on the boundary cannot be measured directly. Several finite difference methods with low order have been proposed in other papers for the numerical solution of this one dimensional non-classic boundary value problem. Here, we derive a new family of efficient three-level algorithms with higher order to solve the wave equation and also use a Simpson formula with higher order to approximate the integral conditions. Additionally, the fourth-order formula is also adapted to nonlinear equations, in particular to the well-known nonlinear Klein–Gordon equations which many physical problems can be modeled with. Numerical results are presented and are compared with some existing methods showing the efficiency of the new algorithms.  相似文献   

18.
In this work we introduce two new Barzilai and Borwein-like steps sizes for the classical gradient method for strictly convex quadratic optimization problems.The proposed step sizes employ second-order information in order to obtain faster gradient-type methods.Both step sizes are derived from two unconstrained optimization models that involve approximate information of the Hessian of the objective function.A convergence analysis of the proposed algorithm is provided.Some numerical experiments are performed in order to compare the efficiency and effectiveness of the proposed methods with similar methods in the literature.Experimentally,it is observed that our proposals accelerate the gradient method at nearly no extra computational cost,which makes our proposal a good alternative to solve large-scale problems.  相似文献   

19.
A new family of p-stage methods for the numerical integration of some scalar equations and systems of ODEs is proposed. These methods can be seen as a generalization of the explicit p-stage Runge–Kutta ones, while providing better order and stability results. We will show in this first part that, at the cost of losing linearity in the formulas, it is possible to obtain explicit A-stable and L-stable methods for the numerical integration of scalar autonomous ODEs. Scalar autonomous ODEs are of very little interest in current applications. However, be begin studying this kind of problems because most of the work can be easily extended to a more general situation. In fact, we will show in a second part (entitled ‘The separated system case'), that it is possible to generalize our methods so that they can be applied to some non-autonomous scalar ODEs and systems. We will obtain linearly implicit L-stable methods which do not require Jacobian evaluations. In both parts, some numerical examples are discussed in order to show the good performance of the new schemes.  相似文献   

20.
Attahiru Sule Alfa 《TOP》2002,10(2):147-185
This is an expository paper dealing with discrete time analysis of queues using matrix-analytic methods (MAM). Discrete time analysis queues has always been popular with engineers who are very keen on obtaining numerical values out of their analyses for the sake of experimentation and design. As telecommunication systems are based more on digital technology these days than analog the need to use discrete time analysis for queues has become more important. Besides, we find that several queues which are difficult to analyse by the continuous time approach are sometimes easier to analyse using discrete time method. Of course, there are some queueing problems which are easier to analyse using continuous time approach instead of discrete time. We discuss, in this paper, both the advantages and disadvantages of discrete time analysis. The paper focusses on setting up several queueing systems as discrete time quasi-birth-and-death processes and then shows how to use matrix-geometric method (MGM), a class of MAM, to analyse the problems. We point out that there are other methods for analysing such queues but MGM provides a much simpler approach for setting up the problems in order to obtain semi-explicit results for computational tractability. We also point out some of the shortcomings of MGM. The paper mainly focusses on the Geo/Geo/1, PH/PH/1, GI/G/1 and GI/G/1/K systems and some of the related problems, including vacation models with time-limited visits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号